Exemplo n.º 1
0
    def forward(self, focus):
        focus = focus['__train__']
        frames = util.extract_neighbor(self.frame_source,
                                       focus,
                                       np.arange(focus.shape[0]),
                                       nb_size=self.nb_size)
        frame_dev = self._deviation_1(frames)
        focus_dev = self._deviation_2(focus)
        frame_var = self._variance(frames)

        belief_dev = 0
        if self.belief_dev_coeff != 0:
            pre_frames = util.extract_neighbor(
                self.frame_source,
                focus[1:],
                np.arange(focus.shape[0] - 1),
                nb_size=self.nb_size)  # I_{t}(x_{t+1})
            post_frames = util.extract_neighbor(
                self.frame_source,
                focus[:-1],
                np.arange(focus.shape[0] - 1) + 1,
                nb_size=self.nb_size)  # I_{t+1}(x_{t})
            belief_dev = self._belief_deviation(focus, frames, pre_frames,
                                                post_frames)

        if self.verbose:
            logger.info(
                'frame_dev= %f, focus_dev= %f, frame_var= %f, belief_dev= %f' %
                (frame_dev, focus_dev, frame_var, belief_dev))
        return  self.frame_dev_coeff*frame_dev \
            + self.focus_dev_coeff*focus_dev \
            - self.frame_var_coeff*frame_var \
            - self.belief_dev_coeff*belief_dev
Exemplo n.º 2
0
def save_focus_img(dataset, all_focus, save_path, changepoints=[]):
    focus_img = util.extract_neighbor(dataset,
                                      all_focus,
                                      range(len(all_focus)),
                                      nb_size=(15, 20))
    for i, img in enumerate(focus_img):
        # focused neighbor image
        file_name = 'focus_img_%d.png' % (i)
        file_path = os.path.join(save_path, file_name)
        imsave(file_path, img)
    print('saved under', save_path)

    pos_cnt = np.zeros(dataset.get_shape()[-2:])
    cp_mask = np.zeros(len(all_focus), dtype=bool)
    cp_mask[changepoints] = True
    save_subpath = util.get_dir(os.path.join(save_path, 'marker'))
    for i, img in enumerate(dataset.get_frame(0, len(all_focus))):
        # for i, img in enumerate(util.remove_mean(dataset.get_frame(0, len(all_focus)), all_focus)):
        # marker
        file_name = 'marker_%d.png' % (i)
        marker_file_path = os.path.join(save_subpath, file_name)
        marker_pos = (all_focus[i] * dataset.get_shape()[2:]).astype(int)
        img[0, marker_pos[0], :] = 1
        img[0, :, marker_pos[1]] = 1
        if cp_mask[i]:
            img = 1 - img
        pos_cnt[marker_pos[0], marker_pos[1]] += 1
        imsave(marker_file_path, img[0])
    print('focus by marker saved under', save_subpath)

    if np.sum(pos_cnt) > 0:
        pos_cnt = np.sqrt(1.0 - (pos_cnt / np.max(pos_cnt) - 1)**2)
        pos_cnt_file_path = os.path.join(save_path, 'counter_pos.png')
        imsave(pos_cnt_file_path, pos_cnt)
        print('position count saved at', pos_cnt_file_path)
Exemplo n.º 3
0
def plot_focus(dataset, indices, all_focus):
    PX, PY = 2, len(all_focus)
    focus_img = util.extract_neighbor(dataset,
                                      all_focus,
                                      indices,
                                      nb_size=(15, 20))
    for i in range(PY):
        plt.subplot(PX, PY, i + 1)
        plt.imshow(dataset.get_frame(indices[i])[0], interpolation=None)

        plt.subplot(PX, PY, PY + i + 1)
        plt.imshow(focus_img[i], interpolation=None)
    plt.show()
Exemplo n.º 4
0
    def from_focus_model(focus_model_forward, dataset, nb_size, batch_size=100):
        n_channel = 1  # dataset.get_shape()[-3]  # TODO: properly do this
        match_size = (n_channel, nb_size[0]*2+1, nb_size[1]*2+1)
        img_stack = np.zeros((dataset.n_state,) + match_size)
        weight_stack = np.zeros(dataset.n_state)
        cur_n = 0

        for l in range(0, dataset.n_state, batch_size):
            print(l)  # TODO: remove
            r = min(l + batch_size, dataset.n_state)
            frames = dataset.get_frame(l, r)
            focus, extra = focus_model_forward(frames)
            neighbor = util.extract_neighbor(dataset, focus, np.arange(l, r),
                                             nb_size=nb_size)
            img_stack[l:r, 0] = neighbor  # properly channels?
            weight_stack[l:r] = util.focus_intensity(focus[l:r], extra[l:r])

        img_mean = np.average(img_stack, weights=weight_stack, axis=0)
        img_var = np.average((img_stack - img_mean)**2, weights=weight_stack, 
                             axis=0)**0.5  # TODO: this is biased
        return ModelFocusMeanVar(img_mean, img_var)