Exemplo n.º 1
0
def SMSEMOA(N, maxgen, problem, encoding):
    D = problem.D
    M = problem.M
    lower = problem.lower
    upper = problem.upper

    pc = 1
    pm = 1 / D

    pop = initial(N, D, M, lower, upper, problem, encoding)
    gen = 1

    start = time.time()
    fig = plt.figure()
    while gen <= maxgen:
        for i in range(N):
            k = np.random.randint(0, len(pop))
            l = np.random.randint(0, len(pop))

            # keep different
            while k == l:
                l = np.random.randint(0, len(pop))

            pop_parent = [pop[k], pop[l]]
            pop_offspring = crossMutation(pop_parent, D, lower, upper, pc, pm,
                                          problem)
            if checkDominance(pop_offspring[0], pop_offspring[1]):
                q = pop_offspring[0]
            else:
                q = pop_offspring[1]

            pop_combine = np.hstack([pop, q])
            pop_combine = list(pop_combine)
            pop = Reduce(pop_combine, M)

        gen += 1
        start1 = time.time()
        draw(problem, pop, M, fig)
        if gen < maxgen:
            plt.clf()
        end1 = time.time()
        print("3:%7fs" % (end1 - start1))

        if (gen % 10) == 0:
            print("%d gen has completed!\n" % gen)

    plt.ioff()
    end = time.time()
    print("runtime:%2fs" % (end - start))
    #plt.show()
    # PRINT INDICATOR

    score = HV(pop)

    print("HV indicator:%f" % score)

    plt.show()
Exemplo n.º 2
0
def IBEA(N, maxgen, problem, encoding):
    start = time.time()
    D = problem.D
    M = problem.M
    lower = problem.lower
    upper = problem.upper

    pc = 1
    pm = 1 / D

    kappa = 0.05

    pop = initial(N, D, M, lower, upper, problem, encoding)

    gen = 1

    plt.ion()
    fig = plt.figure()
    while gen <= maxgen:
        Fitness, fitness, pop = Calfitness(pop, kappa, len(pop))
        pop_parent1 = TournamentSelection(pop, N)
        pop_parent2 = TournamentSelection(pop, N)
        pop_parent = pop_parent1 + pop_parent2
        length = len(pop_parent)
        pop_offspring = crossMutation(pop_parent, D, lower, upper, pc, pm,
                                      problem, 1, 2)
        pop_mixed = pop + pop_offspring
        Fitness, fitness, pop = Calfitness(pop_mixed, kappa, len(pop_mixed))

        pop = EnviromentSelection(pop_mixed, fitness, length)

        draw(problem, pop, M, fig)
        if gen < maxgen:
            plt.clf()

        if gen % 10 == 0:
            print("%d gen has completed" % gen)
        gen += 1

    end = time.time()

    plt.ioff()
    print("runtime: %.2fs" % (end - start))

    # PRINT INDICATOR
    temp = []
    for i in range(N):
        temp.append(pop[i].obj)

    popObj = np.vstack(temp)

    score = HV(popObj)

    print("HV indicator:%f" % score)

    plt.show()
Exemplo n.º 3
0
def NSGAII(N, maxgen, problem, encoding):
    D = problem.D
    M = problem.M
    lower = problem.lower
    upper = problem.upper
    pc = 0.9
    pm = 1 / D
    pop = initial(N, D, M, lower, upper, problem, encoding)

    F1, pop_non, _ = nonDominatedSort(N, pop)
    pop = crowdingDistance(F1, pop_non, M)

    start = time.time()
    gen = 1
    fig = plt.figure()
    plt.ion()
    while gen <= maxgen:

        pop_parent1 = tournamentSelection(pop, N)
        pop_parent2 = tournamentSelection(pop, N)
        pop_parent = pop_parent1 + pop_parent2
        #print(np.size(pop_parent))
        pop_offspring = crossMutation(pop_parent, D, lower, upper, pc, pm,
                                      problem)
        pop_combine = pop + pop_offspring

        F, pop_combine_non, _ = nonDominatedSort(len(pop_combine), pop_combine)
        pop_combine2 = crowdingDistance(F, pop_combine_non, M)

        pop = elitism(N, pop_combine2)

        draw(problem, pop, M, fig)
        if gen < maxgen:
            plt.clf()

        if (gen % 10) == 0:
            print("%d gen has completed!\n" % gen)
        gen = gen + 1
    end = time.time()
    plt.ioff()

    print("runtime:%2fs" % (end - start))

    #PRINT INDICATOR

    score = HV(pop)

    print("HV indicator:%f" % score)

    plt.show()
Exemplo n.º 4
0
def SPEA2(N, maxgen, problem, encoding):
    start = time.time()

    D = problem.D
    M = problem.M
    lower = problem.lower
    upper = problem.upper

    pc = 1
    pm = 1 / D
    k = round(np.sqrt(2 * N))

    pop = initial(N, D, M, lower, upper, problem, encoding)
    pop_ex = []

    fig = plt.figure()
    plt.ion()
    gen = 1
    while True:
        pop_combine = pop + pop_ex

        pop_combine = Calfitness(pop_combine, k, M)
        pop_ex = EnvironmentalSelection(pop_combine, N, M)

        draw(problem, pop_ex, M, fig)
        if gen < maxgen:
            plt.clf()
        if gen > maxgen:
            break

        pop_mating = MatingSelection(pop_ex, N)
        #print(len(pop_mating))
        pop = crossMutation(pop_mating, D, lower, upper, pc, pm, problem)
        #print("!!%d"%len(pop))

        gen += 1
        if gen % 10 == 0:
            print("%d gen has completed" % gen)
    end = time.time()
    plt.ioff()

    print("runtime: %.2fs" % (end - start))
    plt.show()
Exemplo n.º 5
0
def MOEAD(N,maxgen,problem,encoding,type = 1):
    start = time.time()


    D = problem.D
    M = problem.M
    lower = problem.lower
    upper = problem.upper
    pc = 1
    pm = 1 / D

    W, N = UniformPoint(N, M)
    T = np.ceil(N/10)
    T = int(T)
    B = FindNeighbour(W, N, M, T)

    #print(W[99])



    pop = initial(N, D, M, lower, upper, problem, encoding)
    z = Best(pop)

    gen = 1
    plt.ion()
    fig = plt.figure()

    while gen<=maxgen:
        for i in range(N):
            k = np.random.randint(0,T)
            l = np.random.randint(0,T)
            while k==l:
                l = np.random.randint(0,T)
            pop_parent = [pop[B[i][k]],pop[B[i][l]]]
            pop_offspring = crossMutation(pop_parent, D, lower, upper, pc, pm, problem)
            if checkDominance(pop_offspring[0],pop_offspring[1]):
                y = pop_offspring[0]
            else:
                y = pop_offspring[1]

            for j in range(len(z)):
                if y.obj[j]<z[j]:
                    z[j] = y.obj[j]

            #小心这使用的权重,之前搞错了
            for j in range(T):
                if Tchebycheff(y,W[B[i][j]],z) < Tchebycheff(pop[B[i][j]],W[B[i][j]],z):
                    pop[B[i][j]] = y


        draw(problem,pop, M, fig)
        # print(Tchebycheff(pop[99],W[99],z))
        # print(pop[99].obj[0],pop[99].obj[1])
        if gen < maxgen:
            plt.clf()

        if (gen % 10) == 0:
            print("%d gen has completed!\n" % gen)
        gen = gen + 1;
    end = time.time()
    plt.ioff()
    print("runtime:%2fs" % (end - start))
    # for i in range(N):
    #     print("population %f obj[0]: %f obj[1]: %f obj[2]: %f"%(i,pop[i].obj[0],pop[i].obj[1],pop[i].obj[2]))
    #     print("x[0]:%f x[1]:%f x[2]:%f x[3]:%f x[4]:%f x[5]:%f  x[6]:%f x[7]:%f x[8]:%f"
    #           %(pop[i].x[0],pop[i].x[1],pop[i].x[2],pop[i].x[3],pop[i].x[4],pop[i].x[5],pop[i].x[6],pop[i].x[7],pop[i].x[8])
    #           )
    #     print("here")

    # PRINT INDICATOR

    score = HV(pop)

    print("HV indicator:%f" % score)




    plt.show()