Exemplo n.º 1
0
    def test_bayes(self):
        x = np.random.random_integers(1, 3, (100, 5))
        col = np.random.randint(5)
        y = x[:, col].copy().reshape(100, 1)
        t = Table(x, y)
        t = discretization.DiscretizeTable(t, method=EqualWidth(n=3))

        res = testing.TestOnTrainingData(t, [naive_bayes.NaiveBayesLearner()])
        np.testing.assert_almost_equal(scoring.CA(res), [1])

        t.Y[-20:] = 4 - t.Y[-20:]
        res = testing.TestOnTrainingData(t, [naive_bayes.NaiveBayesLearner()])
        self.assertGreaterEqual(scoring.CA(res)[0], 0.75)
        self.assertLess(scoring.CA(res)[0], 1)
Exemplo n.º 2
0
 def test_NaiveBayes(self):
     table = Orange.data.Table('titanic')
     bayes = nb.NaiveBayesLearner()
     results = testing.CrossValidation(table[::20], [bayes], k=10)
     ca = scoring.CA(results)
     self.assertGreater(ca, 0.7)
     self.assertLess(ca, 0.9)
Exemplo n.º 3
0
 def test_predict_numpy(self):
     table = Orange.data.Table('titanic')
     bayes = nb.NaiveBayesLearner()
     c = bayes(table)
     X = table.X[::20]
     c(X)
     vals, probs = c(X, c.ValueProbs)
Exemplo n.º 4
0
 def test_predict_table(self):
     table = Orange.data.Table('titanic')
     bayes = nb.NaiveBayesLearner()
     c = bayes(table)
     table = table[::20]
     c(table)
     vals, probs = c(table, c.ValueProbs)
Exemplo n.º 5
0
 def test_predict_single_instance(self):
     table = Orange.data.Table('titanic')
     bayes = nb.NaiveBayesLearner()
     c = bayes(table)
     for ins in table[::20]:
         c(ins)
         val, prob = c(ins, c.ValueProbs)
Exemplo n.º 6
0
 def test_predict_single_instance(self):
     table = data.Table("titanic")
     learn = nb.NaiveBayesLearner()
     clf = learn(table)
     pred = []
     for row in table:
         pred.append(clf(row))
Exemplo n.º 7
0
 def test_NaiveBayes(self):
     table = SqlTable(
         connection_params(),
         "iris",
         type_hints=Domain(
             [],
             DiscreteVariable("iris",
                              values=[
                                  "Iris-setosa", "Iris-virginica",
                                  "Iris-versicolor"
                              ]),
         ),
     )
     table = preprocess.Discretize(table)
     bayes = nb.NaiveBayesLearner()
     clf = bayes(table)
     # Single instance prediction
     self.assertEqual(clf(table[0]), table[0].get_class())
     # Table prediction
     pred = clf(table)
     actual = array([ins.get_class() for ins in table])
     ca = pred == actual
     ca = ca.sum() / len(ca)
     self.assertGreater(ca, 0.95)
     self.assertLess(ca, 1.0)
Exemplo n.º 8
0
def main():
    from Orange.classification import \
        logistic_regression as lr, naive_bayes as nb

    app = QtGui.QApplication([])
    data = Orange.data.Table("iris")
    w = OWTestLearners()
    w.show()
    w.set_train_data(data)
    w.set_test_data(data)
    w.set_learner(lr.LogisticRegressionLearner(), 1)
    w.set_learner(nb.NaiveBayesLearner(), 2)
    w.handleNewSignals()
    return app.exec_()
Exemplo n.º 9
0
 def test_NaiveBayes(self):
     table = SqlTable(dict(host='localhost', database='test'), 'iris',
                      type_hints=Domain([], DiscreteVariable("iris",
                             values=['Iris-setosa', 'Iris-virginica',
                                     'Iris-versicolor'])))
     table = preprocess.Discretize(table)
     bayes = nb.NaiveBayesLearner()
     clf = bayes(table)
     # Single instance prediction
     self.assertEqual(clf(table[0]), table[0].get_class())
     # Table prediction
     pred = clf(table)
     actual = array([ins.get_class() for ins in table])
     ca = pred == actual
     ca = ca.sum() / len(ca)
     self.assertGreater(ca, 0.95)
     self.assertLess(ca, 1.)
Exemplo n.º 10
0
 def test_NaiveBayes(self):
     iris_v = ['Iris-setosa', 'Iris-virginica', 'Iris-versicolor']
     table = SqlTable(self.conn,
                      self.iris,
                      type_hints=Domain([],
                                        DiscreteVariable("iris",
                                                         values=iris_v)))
     disc = preprocess.Discretize()
     table = disc(table)
     bayes = nb.NaiveBayesLearner()
     clf = bayes(table)
     # Single instance prediction
     self.assertEqual(clf(table[0]), table[0].get_class())
     # Table prediction
     pred = clf(table)
     actual = array([ins.get_class() for ins in table])
     ca = pred == actual
     ca = ca.sum() / len(ca)
     self.assertGreater(ca, 0.95)
     self.assertLess(ca, 1.)