Exemplo n.º 1
0
 def test_adaboost_base_estimator(self):
     np.random.seed(0)
     stump_estimator = SklTreeLearner(max_depth=1)
     tree_estimator = SklTreeLearner()
     stump = SklAdaBoostLearner(base_estimator=stump_estimator)
     tree = SklAdaBoostLearner(base_estimator=tree_estimator)
     results = CrossValidation(self.iris, [stump, tree], k=4)
     ca = CA(results)
     self.assertLess(ca[0], ca[1])
Exemplo n.º 2
0
 def test_adaboost_base_estimator(self):
     np.random.seed(0)
     stump_estimator = SklTreeLearner(max_depth=1)
     tree_estimator = SklTreeLearner()
     stump = SklAdaBoostClassificationLearner(
         base_estimator=stump_estimator, n_estimators=5)
     tree = SklAdaBoostClassificationLearner(base_estimator=tree_estimator,
                                             n_estimators=5)
     cv = CrossValidation(k=4)
     results = cv(self.iris, [stump, tree])
     ca = CA(results)
     self.assertLessEqual(ca[0], ca[1])
Exemplo n.º 3
0
 def test_input_learner(self):
     """Check if base learner properly changes with learner on the input"""
     max_depth = 2
     default_base_est = self.widget.base_estimator
     self.assertIsInstance(default_base_est, SklTreeLearner)
     self.assertIsNone(default_base_est.params.get("max_depth"))
     self.send_signal("Learner", SklTreeLearner(max_depth=max_depth))
     self.assertEqual(self.widget.base_estimator.params.get("max_depth"),
                      max_depth)
     self.widget.apply_button.button.click()
     output_base_est = self.get_output("Learner").params.get("base_estimator")
     self.assertEqual(output_base_est.max_depth, max_depth)
Exemplo n.º 4
0
 def test_tree(self):
     tree = SklTreeLearner()
     res = CrossValidation(self.iris, [tree], k=2)
     self.assertGreater(AUC(res)[0], 0.8)
     self.assertLess(AUC(res)[0], 1.)
 def test_classification(self):
     table = Table('iris')
     learn = SklTreeLearner()
     clf = learn(table)
     Z = clf(table)
     self.assertTrue(np.all(table.Y.flatten() == Z))
Exemplo n.º 6
0
with open(exportFilePath, "w") as output:
    datae1.to_csv(output, header=True, sep=",")

path1 = ("C:\\Users\\acer\\Desktop\\friends\\export.csv")
datae = p.read_csv(path1)
'''
now fro b part'''
from Orange.classification import SklTreeLearner
td = Table.from_file("C:\\Users\\acer\\Desktop\\friends\\export.csv")
#print(data1.domain)
#print(d)
feature_vars = list(td.domain.variables[1:])
class_label_var = td.domain.variables[7]
print(class_label_var)
md = Domain(feature_vars, class_label_var)
#print(d_dis[0])
td = Table.from_table(domain=md, source=td)
#print(.domain.variables[1:])

n1 = td.approx_len()
print(n1 * 80 / 100)
train_data_set = td[:1360]
test_data_set = td[1360:]
#print(train_data_set.domain)
#print(test_data_set.domain)
tree_learner = SklTreeLearner()
decision_tree = tree_learner(train_data_set)
results = CrossValidation(td, [tree_learner], k=10)
print(decision_tree(test_data_set))
print("Accuracy", scoring.CA(results)[0])
print("AUC", scoring.AUC(results)[0])
Exemplo n.º 7
0
class OWAdaBoostClassification(OWBaseLearner):
    name = "AdaBoost"
    description = "An ensemble meta-algorithm that combines weak learners " \
                  "and adapts to the 'hardness' of each training sample. "
    icon = "icons/AdaBoost.svg"
    priority = 80

    LEARNER = SklAdaBoostLearner

    inputs = [("Learner", LearnerClassification, "set_base_learner")]

    losses = ["SAMME", "SAMME.R"]

    n_estimators = Setting(50)
    learning_rate = Setting(1.)
    algorithm = Setting(0)

    DEFAULT_BASE_ESTIMATOR = SklTreeLearner()

    class Error(OWBaseLearner.Error):
        no_weight_support = Msg('The base learner does not support weights.')

    def add_main_layout(self):
        box = gui.widgetBox(self.controlArea, "Parameters")
        self.base_estimator = self.DEFAULT_BASE_ESTIMATOR
        self.base_label = gui.label(
            box, self, "Base estimator: " + self.base_estimator.name)

        self.n_estimators_spin = gui.spin(box,
                                          self,
                                          "n_estimators",
                                          1,
                                          100,
                                          label="Number of estimators:",
                                          alignment=Qt.AlignRight,
                                          controlWidth=80,
                                          callback=self.settings_changed)
        self.learning_rate_spin = gui.doubleSpin(
            box,
            self,
            "learning_rate",
            1e-5,
            1.0,
            1e-5,
            label="Learning rate:",
            decimals=5,
            alignment=Qt.AlignRight,
            controlWidth=80,
            callback=self.settings_changed)
        self.add_specific_parameters(box)

    def add_specific_parameters(self, box):
        self.algorithm_combo = gui.comboBox(box,
                                            self,
                                            "algorithm",
                                            label="Algorithm:",
                                            items=self.losses,
                                            orientation=Qt.Horizontal,
                                            callback=self.settings_changed)

    def create_learner(self):
        if self.base_estimator is None:
            return None
        return self.LEARNER(base_estimator=self.base_estimator,
                            n_estimators=self.n_estimators,
                            learning_rate=self.learning_rate,
                            preprocessors=self.preprocessors,
                            algorithm=self.losses[self.algorithm])

    def set_base_learner(self, learner):
        self.Error.no_weight_support.clear()
        if learner and not learner.supports_weights:
            # Clear the error and reset to default base learner
            self.Error.no_weight_support()
            self.base_estimator = None
            self.base_label.setText("Base estimator: INVALID")
        else:
            self.base_estimator = learner or self.DEFAULT_BASE_ESTIMATOR
            self.base_label.setText("Base estimator: " +
                                    self.base_estimator.name)
        if self.auto_apply:
            self.apply()

    def get_learner_parameters(self):
        return (("Base estimator", self.base_estimator),
                ("Number of estimators", self.n_estimators),
                ("Algorithm", self.losses[self.algorithm].capitalize()))
def build_decision_tree(max_leaf=None):
    tree_learner = SklTreeLearner(max_leaf_nodes=max_leaf)
    decision_tree = tree_learner(train_dataset)
    print(decision_tree)
    return tree_learner, decision_tree
Exemplo n.º 9
0
"""
#rm_elem takes input list,l and index, i and returns a tuple (a,b), a is the 
#element at l[i] and b is the list without a.
def rm_elem(l, i):
    (a,b) = ('', [])
    for x in range(len(l)):
        if x==i: a = l[x]
        else: b.append(l[x])
    return (a,b)

data_tab = Table.from_file(csv_path_fixed)
class_label_var, feature_vars = rm_elem(data_tab.domain, inx_class_label)
assg1_domain = Domain(feature_vars, class_label_var)
data_tab = Table.from_table(domain=assg1_domain, source=data_tab)

tree_learner = SklTreeLearner()

eval_results = CrossValidation(data_tab, [tree_learner], k=10)
print("Accuracy of cross validation: {:.3f}".format(scoring.CA(eval_results)[0]))
print("AUC: {:.3f}".format(scoring.AUC(eval_results)[0]))


"""
Setting max_leaf_nodes to 4 instead of allowing it to be unlimited as in previous part.
"""
tree_learner_max = SklTreeLearner(max_leaf_nodes = 4)

eval_results_max = CrossValidation(data_tab, [tree_learner_max], k=10)
print("\n\nResult of a decision tree with the limitation to only use 4 leaf nodes\n ")
print("Accuracy of cross validation: {:.3f}".format(scoring.CA(eval_results_max)[0]))
print("AUC: {:.3f}".format(scoring.AUC(eval_results_max)[0]))