Exemplo n.º 1
0
def find_similar(imagenames, plot_features=False):
    '''Find similar images pairs
    '''
    first_figure = True
    images = [ MyImage(i) for i in imagenames ]
    matches = defaultdict(list)
    length = len(images)

    if plot_features:
        for image in images:
            if first_figure:
                first_figure = False
            else:
                pylab.figure()
            sift.plot_features(image.im, image.locs, circle=True)

    for i in range(length):
        this = images[i]
        print 'Find match for', this.filename, ' ',
        for j in range(i+1, length):
            that = images[j]
            sys.stdout.write('.')
            sys.stdout.flush()
            
            matched_points = nn.match_twosided(this.desc, that.desc)
            similarity = sum(matched_points > 0)

            matches[i].append((similarity, j, matched_points))
            matches[j].append((similarity, i, matched_points))
        print ' ',

        # at least 10 points matched
        # and only need top 3 matches
        scores = sorted([k for k in matches[i]
                         if k[0] > 10 ], reverse=True)[:3]
        if not scores:
            print 'No match :('
        else:
            for sim, k, matched_points in scores:
                that = images[k]
                print '%s(%d) ' % (that.filename, sim),

                if first_figure:
                    first_figure = False
                else:
                    pylab.figure()

                if k < i: # only cal the top right triangle
                    this = images[k]
                    that = images[i]
                sift.plot_matches(this.im, that.im,
                                  this.locs, that.locs,
                                  matched_points)
            print

    pylab.show()
Exemplo n.º 2
0
def find_similar(imagenames, plot_features=False):
    '''Find similar images pairs
    '''
    first_figure = True
    images = [MyImage(i) for i in imagenames]
    matches = defaultdict(list)
    length = len(images)

    if plot_features:
        for image in images:
            if first_figure:
                first_figure = False
            else:
                pylab.figure()
            sift.plot_features(image.im, image.locs, circle=True)

    for i in range(length):
        this = images[i]
        print 'Find match for', this.filename, ' ',
        for j in range(i + 1, length):
            that = images[j]
            sys.stdout.write('.')
            sys.stdout.flush()

            matched_points = nn.match_twosided(this.desc, that.desc)
            similarity = sum(matched_points > 0)

            matches[i].append((similarity, j, matched_points))
            matches[j].append((similarity, i, matched_points))
        print ' ',

        # at least 10 points matched
        # and only need top 3 matches
        scores = sorted([k for k in matches[i] if k[0] > 10], reverse=True)[:3]
        if not scores:
            print 'No match :('
        else:
            for sim, k, matched_points in scores:
                that = images[k]
                print '%s(%d) ' % (that.filename, sim),

                if first_figure:
                    first_figure = False
                else:
                    pylab.figure()

                if k < i:  # only cal the top right triangle
                    this = images[k]
                    that = images[i]
                sift.plot_matches(this.im, that.im, this.locs, that.locs,
                                  matched_points)
            print

    pylab.show()
Exemplo n.º 3
0
def plot_match(imagename1, imagename2, show=True, plot_features=True):
    '''Generate SIFT features for two images, plot their
    features onto the original images and link two-sided
    matching points with lines
    '''
    pylab.gray()

    # plot features on images
    # plot matching points
    # matchscores = sift.match_twosided(desc1, desc2)
    matchscores = nn.match_twosided(desc1, desc2)
    sift.plot_matches(im1, im2, locs1, locs2, matchscores)
    pylab.figure()

    if show:
        pylab.show()
Exemplo n.º 4
0
def plot_match(imagename1, imagename2, show=True, plot_features=True):
    '''Generate SIFT features for two images, plot their
    features onto the original images and link two-sided
    matching points with lines
    '''
    pylab.gray()

    # plot features on images
    # plot matching points
    # matchscores = sift.match_twosided(desc1, desc2)
    matchscores = nn.match_twosided(desc1, desc2)
    sift.plot_matches(im1, im2, locs1, locs2, matchscores)
    pylab.figure()

    if show:
        pylab.show()
Exemplo n.º 5
0
l = {}
d = {}
for i in range(5):
    sift.process_image(root + imname[i], root + featname[i])
    l[i], d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
    matches[i] = sift.match(d[i + 1], d[i])

# visualize the matches (Figure 3-11 in the book)
for i in range(4):
    im1 = array(Image.open(imname[i]))
    im2 = array(Image.open(imname[i + 1]))
    figure()
    sift.plot_matches(im2, im1, l[i + 1], l[i], matches[i], show_below=True)


# function to convert the matches to hom. points
def convert_points(j):
    ndx = matches[j].nonzero()[0]
    fp = homography.make_homog(l[j + 1][ndx, :2].T)
    ndx2 = [int(matches[j][i]) for i in ndx]
    tp = homography.make_homog(l[j][ndx2, :2].T)

    # switch x and y - TODO this should move elsewhere
    fp = vstack([fp[1], fp[0], fp[2]])
    tp = vstack([tp[1], tp[0], tp[2]])
    return fp, tp

from pylab import *
from PIL import Image

from PCV.localdescriptors import sift

"""
This is the twosided SIFT feature matching example from Section 2.2 (p 44).
"""

imname1 = '../data/climbing_1_small.jpg'
imname2 = '../data/climbing_2_small.jpg'

# process and save features to file
sift.process_image(imname1, 'climbing_1_small.sift')
sift.process_image(imname2, 'climbing_2_small.sift')

#sift.process_image(imname1, imname1+'.sift')
#sift.process_image(imname2, imname2+'.sift')

# read features and match
l1, d1 = sift.read_features_from_file('climbing_1_small.sift')
l2, d2 = sift.read_features_from_file('climbing_2_small.sift')
matchscores = sift.match_twosided(d1, d2)

# load images and plot
im1 = array(Image.open(imname1))
im2 = array(Image.open(imname2))

sift.plot_matches(im1, im2, l1, l2, matchscores, show_below=True)
show()
Exemplo n.º 7
0
l = {}
d = {}
for i in range(5): 
    # sift.process_image(imname[i],featname[i])
    l[i],d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
    matches[i] = sift.match(d[i+1],d[i])

# visualize the matches (Figure 3-11 in the book)
for i in range(4):
    im1 = array(Image.open(imname[i]))
    im2 = array(Image.open(imname[i+1]))
    figure()
    sift.plot_matches(im2,im1,l[i+1],l[i],matches[i],show_below=True)


# function to convert the matches to hom. points
def convert_points(j):
    ndx = matches[j].nonzero()[0]
    fp = homography.make_homog(l[j+1][ndx,:2].T) 
    ndx2 = [int(matches[j][i]) for i in ndx]
    tp = homography.make_homog(l[j][ndx2,:2].T) 
    
    # switch x and y - TODO this should move elsewhere
    fp = vstack([fp[1],fp[0],fp[2]])
    tp = vstack([tp[1],tp[0],tp[2]])
    return fp,tp

Exemplo n.º 8
0
from pylab import *
from PIL import Image

from PCV.localdescriptors import sift
"""
This is the twosided SIFT feature matching example from Section 2.2 (p 44).
"""

imname1 = '../data/climbing_1_small.jpg'
imname2 = '../data/climbing_2_small.jpg'

# process and save features to file
sift.process_image(imname1, './climbing_1_small.sift')
sift.process_image(imname2, './climbing_2_small.sift')

# sift.process_image(imname1, imname1+'.sift')
# sift.process_image(imname2, imname2+'.sift')

# read features and match
l1, d1 = sift.read_features_from_file('./climbing_1_small.sift')
l2, d2 = sift.read_features_from_file('./climbing_2_small.sift')
#matchscores = sift.match(d1, d2)
matchscores = sift.match_twosided(d1, d2)

# load images and plot
im1 = array(Image.open(imname1))
im2 = array(Image.open(imname2))

sift.plot_matches(im1, im2, l1, l2, matchscores, show_below=True)
show()
Exemplo n.º 9
0
l2, d2 = sift.read_features_from_file('im2.sift')
 
matches = sift.match_twosided(d1, d2)
 
ndx = matches.nonzero()[0]
x1 = homography.make_homog(l1[ndx, :2].T)#将点集转化为齐次坐标表示
ndx2 = [int(matches[i]) for i in ndx]
x2 = homography.make_homog(l2[ndx2, :2].T)#将点集转化为齐次坐标表示
 
d1n = d1[ndx]
d2n = d2[ndx2]
x1n = x1.copy()
x2n = x2.copy()
 
figure(figsize=(16,16))
sift.plot_matches(im1, im2, l1, l2, matches, True)#可视化
show()
 
def F_from_ransac(x1, x2, model, maxiter=5000, match_threshold=1e-6):
    """
    使用RANSAC从点对应中稳健估计基本矩阵F.
  (来自http://www.scipy.org/Cookbook/RANSAC的ransac.py)。
    input: x1, x2 (3*n arrays) points in hom. coordinates. """
 
    from PCV.tools import ransac
    data = np.vstack((x1, x2))
    d = 10 # 20 is the original
    # 计算F并返回inlier索引
    F, ransac_data = ransac.ransac(data.T, model,
                                   8, maxiter, match_threshold, d, return_all=True)
    return F, ransac_data['inliers']