Exemplo n.º 1
0
        if count == len(encoding_dict) :
            index = index + 1
            
    return rlt
def compare(a, b) :
    if len(a) != len(b) :
        return False
    for i in range(len(a)) :
        if a[i] != b[i] :
            return False
    return True

if __name__ == '__main__':
    # start by building Huffman tree from probabilities
    plist = ((0.34,'A'),(0.5,'B'),(0.08,'C'),(0.08,'D'))
    cdict = huffman(plist)

    # test case 1: decode a simple message
    message = ['A', 'B', 'C', 'D']
    encoded_message = PS1_tests.encode(cdict,message)
    decoded_message = decode(cdict,encoded_message)
    assert message == decoded_message, \
           "Decoding failed: expected %s, got %s" % \
           (message,decoded_message)

    # test case 2: construct a random message and encode it
    message = [random.choice('ABCD') for i in xrange(100)]
    encoded_message = PS1_tests.encode(cdict,message)
    decoded_message = decode(cdict,encoded_message)
    assert message == decoded_message, \
           "Decoding failed: expected %s, got %s" % \
Exemplo n.º 2
0
    print "\nBaseline 1:"
    print "  total number of runs:",runs.size
    print "  bits to encode runs with fixed-length code:",\
          8*runs.size

    print "\nBaseline 2:"
    print "  bits in Lempel-Ziv compressed PNG file:",\
          os.stat('PS1_fax_image.png').st_size*8

    # Start by computing the probability of each run length
    # by simply counting how many of each run length we have
    plist = PS1_tests.histogram(runs)

    # Experiment 1: Huffman-encoding run lengths
    cdict = huffman(plist)
    encoded_runs = numpy.concatenate([cdict[r] for r in runs])
    print "\nExperiment 1:"
    print "  bits when Huffman-encoding runs:",\
          len(encoded_runs)
    print "  Top 10 run lengths [probability]:"
    for i in xrange(10):
        print "    %d [%3.2f]" % (plist[i][1],plist[i][0])

    # Experiment 2: Huffman-encoding white runs, black runs
    plist_white = PS1_tests.histogram(runs[0::2])
    cwhite = huffman(plist_white)
    plist_black = PS1_tests.histogram(runs[1::2])
    cblack = huffman(plist_black)
    encoded_runs = numpy.concatenate(
        [cwhite[runs[i]] if (i & 1) == 0 else cblack[runs[i]]
Exemplo n.º 3
0
    return rlt


def compare(a, b):
    if len(a) != len(b):
        return False
    for i in range(len(a)):
        if a[i] != b[i]:
            return False
    return True


if __name__ == '__main__':
    # start by building Huffman tree from probabilities
    plist = ((0.34, 'A'), (0.5, 'B'), (0.08, 'C'), (0.08, 'D'))
    cdict = huffman(plist)

    # test case 1: decode a simple message
    message = ['A', 'B', 'C', 'D']
    encoded_message = PS1_tests.encode(cdict, message)
    decoded_message = decode(cdict, encoded_message)
    assert message == decoded_message, \
           "Decoding failed: expected %s, got %s" % \
           (message,decoded_message)

    # test case 2: construct a random message and encode it
    message = [random.choice('ABCD') for i in xrange(100)]
    encoded_message = PS1_tests.encode(cdict, message)
    decoded_message = decode(cdict, encoded_message)
    assert message == decoded_message, \
           "Decoding failed: expected %s, got %s" % \