Exemplo n.º 1
0
 def __init__(self, cpath):
     self.m1path, self.m2path, self.savepath, self.roadpath, self.indexpath = Writefile.readxml(
         cpath, 1)
     self.dics = Writefile.readxml(cpath, 2)[0].split(',')
     # 道路经纬度坐标
     self.new_lat = glovar.roadlat
     self.new_lon = glovar.roadlon
Exemplo n.º 2
0
 def __init__(self, new_lat, new_lon):
     """
     初始化参数
     :param dics:计算积雪深度所需要素
     """
     cpath = r'/home/cqkj/QHTraffic/Product/Source/snowconfig.xml'
     self.m1path, self.m2path, self.savepath, self.roadpath, self.indexpath = Writefile.readxml(
         cpath, 1)
     self.dics = Writefile.readxml(cpath, 2)[0].split(',')
Exemplo n.º 3
0
def clcindex(data):
    # 计算出交通风险等级并写入
    indexpath = Writefile.readxml(glovar.trafficpath, 6)[-1]
    trafficindex = [np.max(data[i], axis=0) for i in range(56)]
    fname = ['%03d' % i for i in range(3, 169, 3)]
    filetime = Znwg.znwgtime()
    Writefile.write_to_csv(indexpath, trafficindex, 'TrafficIndex', fname, filetime)
Exemplo n.º 4
0
def readIndex():
    """
    从不同的路径中读取指数文件,几个路径则表明返回几个dataframe
    :return: 含Dataframe的list-->[Dataframe, Dataframe ...]
    """
    allindexpath = Writefile.readxml(glovar.trafficpath, 6)
    '''
    tree = ET.parse(path)
    root = tree.getroot()
    allindexpath = [i.text for i in root[-1]]  # 这个应该仅确定目录,通过正则来确定具体的文件名参数
    '''
    print(allindexpath)
    '''
    allfname = []    # allfname应返回多个列表
    for i in range(len(allindexpath)):
        fnames = regex(allindexpath[i])
        allfname.append(fnames)
    '''
    allfname = [regex(index) for index in allindexpath]
    print(allfname)
    windpath, icepath, floodpath = [], [], []
    windvalue, icevalue, floodvalue = [], [], []
    for i in range(len(allfname[0])):
        windpath.append(os.path.join(allindexpath[0], allfname[0][i]))
        windvalue.append(pd.read_csv(os.path.join(allindexpath[0], allfname[0][i])))
        icepath.append(os.path.join(allindexpath[1], allfname[1][i]))
        icevalue.append(pd.read_csv(os.path.join(allindexpath[1], allfname[1][i])))
        floodpath.append(os.path.join(allindexpath[2], allfname[2][i]))
        floodvalue.append(pd.read_csv(os.path.join(allindexpath[2], allfname[2][i])))
    return windvalue, icevalue, floodvalue
Exemplo n.º 5
0
def Weatherdata(path):
    # ?????????????????????
    elements, subdirs, localdir, _, freq, *ftp = Writefile.readxml(path, 1)
    now = datetime.datetime.now()
    elements = elements.split(',')
    subdirs = subdirs.split(',')
    remote_urls = [os.path.join(subdir, now.strftime('%Y'), now.strftime('%Y%m%d')) for subdir in subdirs]  # ??????

    grib = Datainterface.GribData()
    '''
    [grib.mirror(element, remote_url, localdir, freq, ftp) for element, remote_url in
     zip(elements[:-1], remote_urls[:-1])]  # ???????³†??????????????????(24003)
     '''
    for element, remote_url in zip(elements[:-1], remote_urls[:-1]):
        grib.mirror(element, remote_url, localdir, freq, ftp)

    grib.mirror(elements[-1], remote_urls[-1], localdir, '24024', ftp)  # ???????????
    # ???????????????????§Ò????????????????pattern
    strings = ','.join(os.listdir(localdir))
    patterns = [r'(\w+.EDA.*?.GRB2)', r'(\w+.ERH.*?.GRB2)', r'(\w+.TMP.*?.GRB2)', r'(\w+.ER24.*?.GRB2)']
    allpath = [localdir + sorted(Znwg.regex(pattern, strings), key=str.lower)[-1] for pattern in patterns] # allpath??????????????????§Ò?
    ele14list = slice(1, 74, 8)  # ??+2-1??????????¦Ä??10?????14?????????
    ####????????wind????u???v??
    wind = grib.readGrib(allpath[0])[0]
    windu_v = np.array([v for _, v in wind.items()])
    windu, windv  = windu_v[::2][ele14list], windu_v[1::2][ele14list]
    data = np.array([Znwg.arrange(grib.readGrib(path))[0][ele14list] for path in allpath[1:-1]])  # ?????????????????
    #er, lat, lon, size = Znwg.arrange(grib.readGrib(allpath[-1], nlat=glovar.lat, nlon=glovar.lon))  # ???????????????????¦Ã??????????????????
    er, lat, lon, size = Znwg.arrange([grib.readGrib(allpath[-1], nlat=glovar.latt, nlon=glovar.lonn)][0])
    result = windu, windv, data, er  # ??????????[4,10,181,277]????
    return result, lat, lon
Exemplo n.º 6
0
def clcindex(data, path):
    indexpath = Writefile.readxml(path, 0)
    trafficindex = [np.max(data[i], axis=0) for i in range(56)]
    fname = ['%03d' % i for i in range(3, 169, 3)]
    filetime = Znwg.znwgtime()
    Writefile.write_to_csv(indexpath, trafficindex, 'TrafficIndex', fname,
                           filetime)
Exemplo n.º 7
0
def main():
    snowpath, gpath, fpath, rainpath, savepath = Writefile.readxml(
        glovar.forestpath, 0)  # 积雪nc数据存放位置
    snow = snowdepth(snowpath)  # 积雪数据[10, 801, 1381]
    data, *_ = Weatherdata(glovar.forestpath)  # 森林火险数据
    ldtype = landtype(gpath, fpath)
    gindex, findex, mindex = firelevel(data, rainpath, snow, ldtype)  # 最终生成指数
    filetime = ecmwf.ecreptime()
    fh = range(10)
    fnames = ['_%03d' % i for i in fh]
    Writefile.write_to_nc(savepath,
                          gindex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='green')

    Writefile.write_to_nc(savepath,
                          findex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='forest')

    Writefile.write_to_nc(savepath,
                          mindex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='meteo')
Exemplo n.º 8
0
def main():
    saltedata = saltedata(path)
    snowpre = np.random.randint(0, 1, size=(801 * 1381, 1))
    snow = SnowDepth()
    rep = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]
    region = [
        float(i) for i in ','.join(
            Writefile.readxml(
                r'/home/cqkj/QHTraffic/Product/Traffic/SNOD/config.xml',
                0)).split(',')
    ]
    new_lon = np.arange(region[0], region[2], region[-1])
    new_lat = np.arange(region[1], region[3], region[-1])
    lonlatset, dataset = [], []
    # 提取数据及经纬度(双重循环,看能否改进)
    for dic in snow.dics:
        lon, lat, data = Datainterface.micapsdata(rep, dic, fh)
        lonlatset.append((lon, lat))
        for i in range(data.shape[0] - 1):
            if (np.isnan(data[i]).all() == True) and (i + 1 <= data.shape[0]):
                data[i] = data[i + 1] / 2
                data[i + 1] = data[i + 1] / 2
                interp.interpolateGridData(data, lat, lon, new_lat, new_lon)
            else:
                interp.interpolateGridData(data, lat, lon, new_lat, new_lon)
        dataset.append(data)  # 保存插值后的数据集
    depthgrid = snow.clcsd(dataset, new_lat, new_lon, saltedata, snowpre)
    snow.write(depthgrid, new_lat, new_lon)
    dangerindex = snow.clcindex(depthgrid, new_lat, new_lon)
    snow.write(dangerindex, type=1)
Exemplo n.º 9
0
def snowData():
    # 获取ec数据信息(气温、降水、地温、湿度、积雪深度)
    ectime = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]  # 20点的预报获取今天8:00的ec预报
    # *_, dics = Writefile.readxml(glovar.trafficpath, 0)
    *_, dics = Writefile.readxml(
        r'/home/cqkj/LZD/Product/Product/config/Traffic.xml', 0)
    dicslist = dics.split(',')[:-1]
    lonlatset, dataset = [], []
    for dic in dicslist:
        newdata = []
        lon, lat, data = Datainterface.micapsdata(ectime, dic, fh)
        lonlatset.append((lon, lat))
        for i in range(data.shape[0] - 1):
            if (np.isnan(data[i]).all() == True) and (i + 1 <= data.shape[0]):
                data[i] = data[i + 1] / 2
                data[i + 1] = data[i + 1] / 2
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
            else:
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
        newdata = np.array(newdata)
        # newdata[newdata<0] = 0                    # 保证数据正确性
        dataset.append(newdata)  # 保存插值后的数据集
    return np.array(dataset)
Exemplo n.º 10
0
def filelist(path):
    now = dt.datetime.now().strftime('%Y%m%d')
    pattern = r'(' + now + ')'
    rpath, spath, wpath, icpath, savepath = Writefile.readxml(path, 2)
    pathlists = [rpath, spath, wpath, icpath]
    # 获取出四个智能网格数据列表
    elements = [Znwg.regex(pattern, os.listdir(path)) for path in pathlists]
    return elements
Exemplo n.º 11
0
def reverse(saltedata, dataset, snowdepth):
    """
    # 加载模型生成积雪深度模型结果
    :param saltedata: 卫星数据
    :param dataset:   ec气象要素数据
    :return:
    """

    tmp = [data.reshape(-1, 1) for data in dataset]  # 转换基础要素
    ele = np.concatenate(tmp, axis=1)
    ele.resize(56, 801 * 1381, 4)  # 转换形状,将上一时刻积雪输入
    temp = np.nan_to_num(ele)

    snowdepth = snowdepth.reshape(-1, 1)  # 积雪深度数据,仅包含前一时刻
    m1, m2, savepath, roadpath, indexpath, _ = Writefile.readxml(
        glovar.trafficpath, 0)[0].split(',')
    m2 = r'/home/cqkj/LZD/Product/Product/Source/snow.pickle'
    if saltedata is not None:
        with open(m1, 'rb') as f:
            model1 = pickle.load(f)
            #########################################
        saltedata.resize(801 * 1381, 1)
        typecode = 1
    else:
        with open(m2, 'rb') as f:
            model2 = pickle.load(f)
        typecode = 2
    alldata = []
    ################################################
    for i in range(56):
        # temp = [data.reshape(-1, 1) for data in dataset[i]]  # 仅包含基础要素
        # newdataset = np.concatenate([temp, snowdepth, saltedata], axis=1)
        if typecode == 1:
            newdataset = np.concatenate([temp[i], snowdepth, saltedata],
                                        axis=1)
            prediction = np.array(model1.predict(newdataset))  # 每轮结果
        if typecode == 2:
            #print(presnow.shape)
            # 此处预报结果不可用图像呈现出分块
            newdataset = np.concatenate([temp[i], snowdepth], axis=1)
            prediction = np.array(model2.predict(newdataset))  # 每轮结果
            predictions = np.nan_to_num(prediction)
            print(predictions.shape)
        snowdepth = predictions[:, np.newaxis]  # 结果作为下一次预测的输入
        predictions.resize(len(glovar.lat), len(glovar.lon))
        sdgrid = np.nan_to_num(predictions)
        sdgrid[sdgrid < 0] = 0
        alldata.append(sdgrid)
        sp = r'/data/traffic/snow//'
    Writefile.write_to_nc(sp, np.array(alldata), glovar.lat, glovar.lon,
                          'snowdepth', glovar.fnames, glovar.filetime)
    return np.array(alldata)  # 返回 [56, 801, 1381]网格数据
Exemplo n.º 12
0
def Weatherdata(path):
    # 获取森林火险所需气象数据
    elements, subdirs, localdir, _, freq, *ftp = Writefile.readxml(path, 1)
    now = datetime.datetime.now()
    elements = elements.split(',')
    subdirs = subdirs.split(',')
    remote_urls = [
        os.path.join(subdir, now.strftime('%Y'), now.strftime('%Y%m%d'))
        for subdir in subdirs
    ]  # 待构造

    grib = Datainterface.GribData()
    '''
    [grib.mirror(element, remote_url, localdir, freq, ftp) for element, remote_url in
     zip(elements[:-1], remote_urls[:-1])]  # 同时同步大风、相对湿度、气温要素数据(24003)
     '''
    for element, remote_url in zip(elements[:-1], remote_urls[:-1]):
        grib.mirror(element, remote_url, localdir, freq, ftp)

    grib.mirror(elements[-1], remote_urls[-1], localdir, '24024',
                ftp)  # 同步出降水要素
    # 此处应改为提取出不同要素列表,目前简单实现,构造四个pattern
    strings = ','.join(os.listdir(localdir))
    patterns = [
        r'(\w+.EDA.*?.GRB2)', r'(\w+.ERH.*?.GRB2)', r'(\w+.TMP.*?.GRB2)',
        r'(\w+.ER24.*?.GRB2)'
    ]
    allpath = [
        localdir + sorted(Znwg.regex(pattern, strings), key=str.lower)[-1]
        for pattern in patterns
    ]  # allpath应为四个最新同步的文件列表
    ele14list = slice(1, 74, 8)  # (+2-1)前三个要素未来10天每天14时数据索引
    ####第一个要素wind包含u风和v风
    wind = grib.readGrib(allpath[0])[0]
    windu_v = np.array([v for _, v in wind.items()])
    windu, windv = windu_v[::2][ele14list], windu_v[1::2][ele14list]
    data = np.array([
        Znwg.arrange(grib.readGrib(path))[0][ele14list]
        for path in allpath[1:-1]
    ])  # 读取出前三项数据信息
    #er, lat, lon, size = Znwg.arrange(grib.readGrib(allpath[-1], nlat=glovar.lat, nlon=glovar.lon))  # 降水为国家级资料,先查看经纬度信息是否与前三者一致
    er, lat, lon, size = Znwg.arrange(
        [grib.readGrib(allpath[-1], nlat=glovar.latt, nlon=glovar.lonn)][0])
    result = windu, windv, data, er  # 最终数据应为[4,10,181,277]矩阵
    return result, lat, lon
Exemplo n.º 13
0
def liverain(path, pklpath):
    # ???????ZNWG????????????ݴ?pickle
    # ????????????????????????????
    elements, _, localdir, historydir, freq, *ftp = Writefile.readxml(path, 1)
    now = datetime.datetime.now()
    ytd = now - datetime.timedelta(days=1)
    dir = r'/SCMOC/BEXN'
    remote_url = os.path.join(dir, ytd.strftime('%Y'), ytd.strftime('%Y%m%d'))
    grb = Datainterface.GribData()
    grb.mirror('ER24', remote_url, localdir, '24024', ftp)  # ??????????????
    rainpath = sorted(os.listdir(localdir))[-1]
    os.chdir(localdir)
    rainlive, lat, lon, res = Znwg.arrange([grb.readGrib(rainpath, nlat=glovar.latt, nlon=glovar.lonn)][0])
    ####??????????????????
    with open(pklpath, 'rb') as f:
        data = pickle.load(f)
    data.append(rainlive)
    # §Õ??deque????
    with open(pklpath, 'wb') as f:
        pickle.dump(data, f)
    return rainlive
Exemplo n.º 14
0
def main():
    # 计算出来灾害落区
    # dataset 为获取的各气象要素等级预报
    ######读取nc要素文件#####
    varname = ['Rain', 'Snow_depth', 'Wind', 'Roadic']
    datasets = [
        xr.open_mfdataset(path, concat_dim='time').values
        for path, name in zip(filelist(), varname)
    ]
    rain, snow, wind, roadic = datasets
    roadic *= 8
    snow *= 4
    wind *= 2
    rain *= 1
    ########################
    disaster = roadic + snow + wind + rain
    ########################
    configpath = r'../config/disaster.xml'
    savepath = Writefile.readxml(configpath, 1)[-1]
    filetime = ecmwf.ecreptime()
    fh = range(3, 169, 3)
    fnames = ['_%03d' % i for i in fh]
    Writefile.write_to_nc(savepath, disaster, glovar.lat, glovar.lon,
                          'Disaster', fnames, filetime)
Exemplo n.º 15
0
def main():
    ice = Roadic()
    rep = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]
    '''
    region = [float(i) for i in ','.join(Writefile.readxml(r'/home/cqkj/QHTraffic/Product/Traffic/ROADIC/config.xml', 0)).split(',')]
    new_lon = np.arange(region[0], region[2], region[-1])
    new_lat = np.arange(region[1], region[3], region[-1])
    '''
    dataset = icele()
    icgrid = ice.icegrid(dataset, glovar.lat, glovar.lon)
    # savepath, indexpath = Writefile.readxml(r'/home/cqkj/QHTraffic/Product/Traffic/ROADIC/config.xml', 1)[2:]
    savepath, indexpath, cmpath, _ = Writefile.readxml(glovar.trafficpath,
                                                       4)[2:]
    # write(savepath, icgrid, 'Roadic', new_lat, new_lon)               # 先保存厚度网格数据
    write(savepath, icgrid, 'Roadic', glovar.lat, glovar.lon)
    # iceroad = ice.depth2onezero(icgrid, new_lat, new_lon)
    iceroad = ice.depth2onezero(icgrid, glovar.lat, glovar.lon)
    ################################################################################
    # 获取cimiss数据集,此处仅为读取,实况数据获取及保存由另一程序实现
    cmissdata = np.loadtxt(cmpath, delimiter=',')
    icedays = RoadIceindex(cmissdata, iceroad)
    roadicing = icedays.iceday()
    write(indexpath, roadicing, 'RoadicIndex', type=1)
Exemplo n.º 16
0
 def __init__(self):
     self._path = glovar.trafficpath
     self.mpath, self.roadpath, *_ = Writefile.readxml(self._path, 4)