Exemplo n.º 1
0
    def test_calculate_display_size_correct_results_length(self):
        """
            test result length
        """
        scene_tool_box = PngcnSceneKpis(self.ProjectConnector_mock,
                                        self.common_mock, 16588190,
                                        self.data_provider_mock)
        mock_df_products_size = self.mock_object(
            '_get_display_size_of_product_in_scene',
            path='Projects.PNGCNTEST.SceneKpis.KPISceneToolBox.PngcnSceneKpis')

        # test that we don't return any thing when the used df is empty
        mock_df_products_size.return_value = pd.DataFrame([{
            'item_id': 2,
            'scene_id': 3,
            'product_size': 0.25
        }])

        # test that we write the correct results to DB
        data_scif = [{
            u'scene_id': 16588190,
            u'item_id': 123,
            u'manufacturer_fk': 4,
            u'rlv_sos_sc': 1,
            u'status': 1
        }, {
            u'scene_id': 16588190,
            u'item_id': 125,
            u'manufacturer_fk': 3,
            u'rlv_sos_sc': 1,
            u'status': 1
        }, {
            u'scene_id': 16588190,
            u'item_id': 136,
            u'manufacturer_fk': 3,
            u'rlv_sos_sc': 1,
            u'status': 1
        }]
        scene_tool_box.scif = pd.DataFrame(data_scif)
        data_df_products_size = [{
            'item_id': 123,
            'scene_id': 16588190,
            'product_size': 1.245
        }, {
            'item_id': 124,
            'scene_id': 16588190,
            'product_size': 0.285
        }, {
            'item_id': 125,
            'scene_id': 16588190,
            'product_size': 1.225
        }, {
            'item_id': 126,
            'scene_id': 16588190,
            'product_size': 0.232
        }, {
            'item_id': 136,
            'scene_id': 16588190,
            'product_size': 0
        }]
        mock_df_products_size.return_value = pd.DataFrame(
            data_df_products_size)
        scene_tool_box.common.write_to_db_result = MagicMock()
        # scene_tool_box.png_manufacturer_fk = 4
        scene_tool_box.calculate_display_size()
        kpi_results = scene_tool_box.common.write_to_db_result.mock_calls[0][2]
        if kpi_results:
            # test that we write 8 fields to DB
            self.assertEqual(len(kpi_results), 8,
                             'expects to write 8 parameters to db')
Exemplo n.º 2
0
    def test_calculate_display_size_correct_results_sanity(self):
        """
            test if the numerator is greater then denominator (if the subgroup is greater then containing group)
        """
        scene_tool_box = PngcnSceneKpis(self.ProjectConnector_mock,
                                        self.common_mock, 16588190,
                                        self.data_provider_mock)
        mock_df_products_size = self.mock_object(
            '_get_display_size_of_product_in_scene',
            path='Projects.PNGCNTEST.SceneKpis.KPISceneToolBox.PngcnSceneKpis')

        # test that we write the correct results to DB
        data_scif = [{
            u'scene_id': 16588190,
            u'item_id': 123,
            u'manufacturer_fk': 4,
            u'rlv_sos_sc': 1,
            u'status': 1
        }, {
            u'scene_id': 16588190,
            u'item_id': 125,
            u'manufacturer_fk': 3,
            u'rlv_sos_sc': 1,
            u'status': 1
        }, {
            u'scene_id': 16588190,
            u'item_id': 136,
            u'manufacturer_fk': 3,
            u'rlv_sos_sc': 1,
            u'status': 1
        }]
        scene_tool_box.scif = pd.DataFrame(data_scif)
        data_df_products_size = [{
            'item_id': 123,
            'scene_id': 16588190,
            'product_size': 1.245
        }, {
            'item_id': 124,
            'scene_id': 16588190,
            'product_size': 0.285
        }, {
            'item_id': 125,
            'scene_id': 16588190,
            'product_size': 1.225
        }, {
            'item_id': 126,
            'scene_id': 16588190,
            'product_size': 0.232
        }, {
            'item_id': 136,
            'scene_id': 16588190,
            'product_size': 0
        }]
        mock_df_products_size.return_value = pd.DataFrame(
            data_df_products_size)
        scene_tool_box.common.write_to_db_result = MagicMock()
        scene_tool_box.calculate_display_size()
        kpi_results = scene_tool_box.common.write_to_db_result.mock_calls[0][2]
        if kpi_results:
            numerator = kpi_results['numerator_result']
            denominator = kpi_results['denominator_result']
            # test if the numerator is greater then denominator (if the subgroup is greater then containing group)
            self.assertGreaterEqual(
                denominator, numerator,
                'the numerator cant be greater then denominator')
Exemplo n.º 3
0
 def test_calculate_display_size_correct_results_type(self):
     """
         test that the type of the numerator and denominator is float
     """
     scene_tool_box = PngcnSceneKpis(self.ProjectConnector_mock,
                                     self.common_mock, 16588190,
                                     self.data_provider_mock)
     mock_df_products_size = self.mock_object(
         '_get_display_size_of_product_in_scene',
         path='Projects.PNGCNTEST.SceneKpis.KPISceneToolBox.PngcnSceneKpis')
     # test that we don't return any thing when the used df is empty
     mock_df_products_size.return_value = pd.DataFrame([{
         'item_id': 2,
         'scene_id': 3,
         'product_size': 0.25
     }])
     # test that we write the correct results to DB
     data_scif = [{
         u'scene_id': 16588190,
         u'item_id': 123,
         u'manufacturer_fk': 4,
         u'rlv_sos_sc': 1,
         u'status': 1
     }, {
         u'scene_id': 16588190,
         u'item_id': 125,
         u'manufacturer_fk': 3,
         u'rlv_sos_sc': 1,
         u'status': 1
     }, {
         u'scene_id': 16588190,
         u'item_id': 136,
         u'manufacturer_fk': 3,
         u'rlv_sos_sc': 1,
         u'status': 1
     }]
     scene_tool_box.scif = pd.DataFrame(data_scif)
     data_df_products_size = [{
         'item_id': 123,
         'scene_id': 16588190,
         'product_size': 1.245
     }, {
         'item_id': 124,
         'scene_id': 16588190,
         'product_size': 0.285
     }, {
         'item_id': 125,
         'scene_id': 16588190,
         'product_size': 1.225
     }, {
         'item_id': 126,
         'scene_id': 16588190,
         'product_size': 0.232
     }, {
         'item_id': 136,
         'scene_id': 16588190,
         'product_size': 0
     }]
     mock_df_products_size.return_value = pd.DataFrame(
         data_df_products_size)
     scene_tool_box.common.write_to_db_result = MagicMock()
     scene_tool_box.calculate_display_size()
     kpi_results = scene_tool_box.common.write_to_db_result.mock_calls[0][2]
     if kpi_results:
         numerator = kpi_results['numerator_result']
         denominator = kpi_results['denominator_result']
         # test that the type of the numerator and denominator is float
         self.assertIsInstance(denominator, float)
         self.assertIsInstance(numerator, float)