Exemplo n.º 1
0
def Q3_1():
	clear()
	A = Var("A")
	B = Var("B")
	p1 = premise(Or(A, B))

	return orE(p1, arrowI(assume(A), orIR(assumed(A), Or(B, A)), Arrow(A, Or(B, A))), arrowI(assume(B), orIL(assumed(B), Or(B, A)), Arrow(B, Or(B, A))), Or(B, A))
Exemplo n.º 2
0
def Q3_2():
	clear()
	A = Var("A")
	B = Var("B")
	p1 = premise(Or(A, B))
	p2 = premise(Not(B))

	return orE(p1, Arrow(A,A), arrowI(assume(B), FE(notE(assumed(B), p2, false()), A), Arrow(B, A)), A)
Exemplo n.º 3
0
def orComm():
    A = Var("a")
    B = Var("b")
    p1 = premise(Or(A, B))

    return orE(
        p1, arrowI(assume(A), orIR(assumed(A), Or(B, A)), Arrow(A, Or(B, A))),
        arrowI(assume(B), orIL(assumed(B), Or(B, A)), Arrow(B, Or(B, A))),
        Or(B, A))
Exemplo n.º 4
0
def Q3_3():
	clear()
	A = Var("A")
	B = Var("B")
	p1 = premise(Or(Not(A), Not(B)))
	end = Not(And(A,B))
	A_B = And(A,B)
	
	return orE(p1, arrowI(assume(Not(A)), notI(arrowI(assume(A_B), notE(andEL(assumed(A_B), A), assumed(Not(A)), false()), Arrow(A_B, false())), Not(A_B)), Arrow(Not(A), Not(A_B))), arrowI(assume(Not(B)), notI(arrowI(assume(A_B), notE(andER(assumed(A_B), B), assumed(Not(B)), false()), Arrow(A_B, false())), Not(A_B)), Arrow(Not(B), Not(A_B))), end)
Exemplo n.º 5
0
def disSyl():
    A = Var("a")
    B = Var("b")
    p1 = premise(Or(A, B))
    p2 = premise(Not(B))

    return orE(
        p1, arrowI(assume(A), assumed(A), Arrow(A, A)),
        arrowI(assume(B), FE(notE(assumed(B), p2, false()), A), Arrow(B, A)),
        A)
Exemplo n.º 6
0
def doubleNeg(p, a):
    l1 = LEM(Or(a, Not(a)))
    l2 = assume(a)
    l3 = assumed(a)
    l4 = arrowI(l2, l3, Arrow(a, a))
    l5 = assume(Not(a))
    l6 = assumed(Not(a))
    l7 = notE(l6, p, false())
    l8 = FE(l7, a)
    l9 = arrowI(l5, l8, Arrow(Not(a), a))
    l10 = orE(l1, l4, l9, a)
    return l10
Exemplo n.º 7
0
def DM1():
    A = Var("a")
    B = Var("b")
    p1 = premise(Or(Not(A), Not(B)))
    end = Not(And(A, B))
    A_B = And(A, B)
    #I condensed parts of the proofs so I could substitute in things that made sense to me, otherwise I was going nuts

    return orE(
        p1,
        arrowI(
            assume(Not(A)),
            notI(
                arrowI(assume(A_B),
                       notE(andEL(assumed(A_B), A), assumed(Not(A)), false()),
                       Arrow(A_B, false())), Not(A_B)),
            Arrow(Not(A), Not(A_B))),
        arrowI(
            assume(Not(B)),
            notI(
                arrowI(assume(A_B),
                       notE(andER(assumed(A_B), B), assumed(Not(B)), false()),
                       Arrow(A_B, false())), Not(A_B)),
            Arrow(Not(B), Not(A_B))), end)