Exemplo n.º 1
0
 def test_binsizes(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=False)
     self.assertCountEqual(ale_eff.loc[:, "size"], [57, 77, 66])
Exemplo n.º 2
0
 def test_indexname(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=False)
     self.assertEqual(ale_eff.index.name, "x5")
Exemplo n.º 3
0
 def test_outputshape_noCI(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=False)
     self.assertEqual(ale_eff.shape, (3, 2))
     self.assertCountEqual(ale_eff.columns, ["eff", "size"])
Exemplo n.º 4
0
 def test_effvalues(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=False)
     self.assertCountEqual(
         np.round(ale_eff.loc[:, "eff"], 8),
         [-0.05565697, 0.02367971, 0.02044105],
     )
Exemplo n.º 5
0
 def test_bins(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=False)
     self.assertCountEqual(
         ale_eff.index,
         ['A', 'B', 'C'],
     )
Exemplo n.º 6
0
 def test_outputshape_withCI(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=True,
                                      C=0.9)
     self.assertEqual(ale_eff.shape, (3, 4))
     self.assertCountEqual(ale_eff.columns,
                           ["eff", "size", "lowerCI_90%", "upperCI_90%"])
Exemplo n.º 7
0
 def test_CIvalues(self):
     ale_eff = aleplot_1D_categorical(X=self.X,
                                      model=self.model,
                                      feature="x5",
                                      predictors=self.X_cleaned.columns,
                                      encode_fun=onehot_encode_custom,
                                      include_CI=True,
                                      C=0.9)
     # assert that the first bin do not have a CI
     self.assertTrue(np.isnan(ale_eff.loc[ale_eff.index[0], "lowerCI_90%"]))
     self.assertTrue(np.isnan(ale_eff.loc[ale_eff.index[0], "upperCI_90%"]))
     # check the values of the CI
     self.assertCountEqual(
         np.round(ale_eff.loc[ale_eff.index[1]:, "lowerCI_90%"], 8),
         [-0.00605249, -0.00523023],
     )
     self.assertCountEqual(
         np.round(ale_eff.loc[ale_eff.index[1]:, "upperCI_90%"], 8),
         [0.05341192, 0.04611233],
     )
Exemplo n.º 8
0
 def test_exceptions(self):
     mod_not_fit = RandomForestRegressor()
     # dataset should be compatible with the model
     with self.assertRaises(Exception) as mod_ex_1:
         aleplot_1D_categorical(
             X=self.X,
             model=self.model.predict,
             feature="x5",
             predictors=self.X_cleaned.columns,
             encode_fun=onehot_encode_custom,
         )
     with self.assertRaises(Exception) as mod_ex_2:
         aleplot_1D_categorical(
             X=self.X,
             model=self.model,
             feature="x5",
             predictors=self.X.columns,
             encode_fun=onehot_encode_custom,
         )
     with self.assertRaises(Exception) as mod_ex_3:
         aleplot_1D_categorical(
             X=self.X,
             model=self.model,
             feature="x5",
             predictors=self.X_cleaned.columns,
             encode_fun=onehot_encode,
         )
     mod_ex_msg = (
         """There seems to be a problem when predicting with the model.
         Please check the following: 
             - Your model is fitted.
             - The list of predictors contains the names of all the features"""
         """ used for training the model.
             - The encoding function takes the raw feature and returns the"""
         """ right columns encoding it, including the case of a missing category.
         """)
     self.assertEqual(mod_ex_1.exception.args[0], mod_ex_msg)
     self.assertEqual(mod_ex_2.exception.args[0], mod_ex_msg)
     self.assertEqual(mod_ex_3.exception.args[0], mod_ex_msg)