Exemplo n.º 1
0
    def test_different_length_input(self):
        T = np.arange(20)
        S = np.random.random(len(T) + 7)

        emd = EMD()
        with self.assertRaises(ValueError):
            emd.emd(S, T)
Exemplo n.º 2
0
    def test_akima(self):
        dtype = np.float32

        emd = EMD()
        emd.splineKind = 'akima'
        emd.DTYPE = dtype

        arr = lambda x: np.array(x)

        # Test error: len(X)!=len(Y)
        with self.assertRaises(ValueError):
            akima(arr([0]), arr([1, 2]), arr([0, 1, 2]))

        # Test error: any(dt) <= 0
        with self.assertRaises(ValueError):
            akima(arr([1, 0, 2]), arr([1, 2]), arr([0, 1, 2]))
        with self.assertRaises(ValueError):
            akima(arr([0, 0, 2]), arr([1, 2]), arr([0, 1, 1]))

        # Test for correct responses
        T = np.array([0, 1, 2, 3, 4], dtype)
        S = np.array([0, 1, -1, -1, 5], dtype)
        t = np.array([i / 2. for i in range(9)], dtype)

        _t, s = emd.spline_points(t, np.array((T, S)))
        s_true = np.array([
            S[0], 0.9125, S[1], 0.066666, S[2], -1.35416667, S[3], 1.0625, S[4]
        ], dtype)

        self.assertTrue(np.allclose(s_true, s), "Comparing akima with true")

        s_np = akima(np.array(T), np.array(S), np.array(t))
        self.assertTrue(np.allclose(s, s_np), "Shouldn't matter if with numpy")
Exemplo n.º 3
0
    def test_unsupporter_spline(self):
        emd = EMD()
        emd.splineKind = "waterfall"

        S = np.random.random(20)

        with self.assertRaises(ValueError):
            emd.emd(S)
Exemplo n.º 4
0
    def test_wrong_extrema_detection_type(self):
        emd = EMD()
        emd.extrema_detection = "very_complicated"

        t = np.arange(10)
        s = np.array([-1, 0, 1, 0, -1, 0, 3, 0, -9, 0])

        with self.assertRaises(ValueError):
            maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)
Exemplo n.º 5
0
    def __init__(self):

        # Import libraries
        from PyEMD.EMD import EMD

        # Ensemble constants
        self.noise_width = 0.3
        self.trials = 100

        self.EMD = EMD()
        self.EMD.FIXE_H = 5
Exemplo n.º 6
0
    def test_trend(self):
        """
        Input is trend. Expeting no shifting process.
        """
        emd = EMD()

        t = np.arange(0, 1, 0.01)
        S = 2 * t

        # Input - linear function f(t) = 2*t
        IMF = emd.emd(S, t)
        self.assertEqual(IMF.shape[0], 1, "Expecting single IMF")
Exemplo n.º 7
0
    def test_slinear(self):
        dtype = np.float64

        emd = EMD()
        emd.splineKind = 'slinear'
        emd.DTYPE = dtype

        T = np.array([0, 1, 2, 3, 4], dtype=dtype)
        S = np.array([0, 1, -1, -1, 5], dtype=dtype)
        t = np.arange(9, dtype=dtype) / 2.

        _t, s = emd.spline_points(t, np.array((T, S)))

        s_true = np.array([S[0], 0.5, S[1], 0, \
                    S[2], -1, S[3], 2, S[4]], dtype=dtype)
        self.assertTrue(np.allclose(s, s_true), "Comparing SLinear")
Exemplo n.º 8
0
    def test_find_extrema_simple(self):
        """
        Simple test for extrema.
        """
        emd = EMD()
        emd.extrema_detection = "simple"

        t = np.arange(10)
        s = np.array([-1, 0, 1, 0, -1, 0, 3, 0, -9, 0])
        expMaxPos = [2, 6]
        expMaxVal = [1, 3]
        expMinPos = [4, 8]
        expMinVal = [-1, -9]

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        self.assertEqual(maxPos.tolist(), expMaxPos)
        self.assertEqual(maxVal.tolist(), expMaxVal)
        self.assertEqual(minPos.tolist(), expMinPos)
        self.assertEqual(minVal.tolist(), expMinVal)
Exemplo n.º 9
0
    def test_find_extrema_simple_repeat(self):
        """
        Test what happens in /^^\ situation, i.e.
        when extremum is somewhere between two consecutive pts.
        """
        emd = EMD()
        emd.extrema_detection = "simple"

        t = np.arange(2, 13)
        s = np.array([-1, 0, 1, 1, 0, -1, 0, 3, 0, -9, 0])
        expMaxPos = [4, 9]
        expMaxVal = [1, 3]
        expMinPos = [7, 11]
        expMinVal = [-1, -9]

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        self.assertEqual(maxPos.tolist(), expMaxPos)
        self.assertEqual(maxVal.tolist(), expMaxVal)
        self.assertEqual(minPos.tolist(), expMinPos)
        self.assertEqual(minVal.tolist(), expMinVal)
Exemplo n.º 10
0
    def test_cubic(self):
        dtype = np.float64

        emd = EMD()
        emd.splineKind = 'cubic'
        emd.DTYPE = dtype

        T = np.array([0, 1, 2, 3, 4], dtype=dtype)
        S = np.array([0, 1, -1, -1, 5], dtype=dtype)
        t = np.arange(9, dtype=dtype) / 2.

        # TODO: Something weird with float32.
        # Seems to be SciPy problem.
        _t, s = emd.spline_points(t, np.array((T, S)))

        s_true = np.array([S[0], 1.203125, S[1], 0.046875, \
                    S[2], -1.515625, S[3], 1.015625, S[4]], dtype=dtype)
        self.assertTrue(np.allclose(s, s_true), "Comparing cubic")

        T = T[:-2].copy()
        S = S[:-2].copy()
        t = np.arange(5, dtype=dtype) / 2.

        _t, s3 = emd.spline_points(t, np.array((T, S)))

        s3_true = np.array([S[0], 0.78125, S[1], 0.28125, S[2]], dtype=dtype)
        self.assertTrue(np.allclose(s3, s3_true), "Compare cubic 3pts")
Exemplo n.º 11
0
    def test_single_imf(self):
        """
        Input is IMF. Expecint single shifting.
        """

        maxDiff = lambda a, b: np.max(np.abs(a - b))

        emd = EMD()
        emd.FIXE_H = 5

        t = np.arange(0, 1, 0.001)
        c1 = np.cos(4 * 2 * np.pi * t)  # 2 Hz
        S = c1.copy()

        # Input - linear function f(t) = sin(2Hz t)
        IMF = emd.emd(S, t)
        self.assertEqual(IMF.shape[0], 1, "Expecting sin + trend")

        diff = np.allclose(IMF[0], c1)
        self.assertTrue(
            diff, "Expecting 1st IMF to be sin\nMaxDiff = " +
            str(maxDiff(IMF[0], c1)))

        # Input - linear function f(t) = siin(2Hz t) + 2*t
        c2 = 5 * (t + 2)
        S += c2.copy()
        IMF = emd.emd(S, t)

        self.assertEqual(IMF.shape[0], 2, "Expecting sin + trend")
        diff1 = np.allclose(IMF[0], c1, atol=0.2)
        self.assertTrue(
            diff1, "Expecting 1st IMF to be sin\nMaxDiff = " +
            str(maxDiff(IMF[0], c1)))
        diff2 = np.allclose(IMF[1], c2, atol=0.2)
        self.assertTrue(
            diff2, "Expecting 2nd IMF to be trend\nMaxDiff = " +
            str(maxDiff(IMF[1], c2)))
Exemplo n.º 12
0
class EEMD:

    logger = logging.getLogger(__name__)

    def __init__(self):

        # Import libraries
        from PyEMD.EMD import EMD

        # Ensemble constants
        self.noise_width = 0.3
        self.trials = 100

        self.EMD = EMD()
        self.EMD.FIXE_H = 5

    def eemd(self, S, T=None, max_imf=None):

        if T is None: T = np.arange(len(S), dtype=S.dtype)
        if max_imf is None: max_imf = -1

        N = len(S)
        E_IMF = np.zeros((1,N))

        for trial in range(self.trials):
            self.logger.debug("trial: "+str(trial))

            noise = np.random.normal(loc=0, scale=self.noise_width, size=N)

            IMFs = self.emd(S+noise, T, max_imf)
            imfNo = IMFs.shape[0]

            while(E_IMF.shape[0] < imfNo):
                E_IMF = np.vstack((E_IMF, np.zeros(N)))

            E_IMF[:imfNo] += IMFs

        E_IMF /= self.trials

        return E_IMF

    def emd(self, S, T, max_imf=-1):
        return self.EMD.emd(S, T, max_imf)
Exemplo n.º 13
0
    def test_bound_extrapolation_simple(self):
        emd = EMD()
        emd.extrema_detection = "simple"
        emd.nbsym = 1
        emd.DTYPE = np.int64

        S = [0, -3, 1, 4, 3, 2, -2, 0, 1, 2, 1, 0, 1, 2, 5, 4, 0, -2, -1]
        S = np.array(S)
        T = np.arange(len(S))

        pp = emd.prepare_points

        # There are 4 cases for both (L)eft and (R)ight ends. In case of left (L) bound:
        # L1) ,/ -- ext[0] is min, s[0] < ext[1] (1st max)
        # L2) / -- ext[0] is min, s[0] > ext[1] (1st max)
        # L3) ^. -- ext[0] is max, s[0] > ext[1] (1st min)
        # L4) \ -- ext[0] is max, s[0] < ext[1] (1st min)

        ## CASE 1
        # L1, R1 -- no edge MIN & no edge MIN
        s = S.copy()
        t = T.copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        self.assertEqual([-1, 3, 9, 14, 20], maxExtrema[0].tolist())
        self.assertEqual([4, 4, 2, 5, 5], maxExtrema[1].tolist())
        self.assertEqual([-4, 1, 6, 11, 17, 23], minExtrema[0].tolist())
        self.assertEqual([-2, -3, -2, 0, -2, 0], minExtrema[1].tolist())

        ## CASE 2
        # L2, R2 -- edge MIN, edge MIN
        s = S[1:-1].copy()
        t = T[1:-1].copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        self.assertEqual([-1, 3, 9, 14, 20], maxExtrema[0].tolist())
        self.assertEqual([4, 4, 2, 5, 5], maxExtrema[1].tolist())
        self.assertEqual([1, 6, 11, 17], minExtrema[0].tolist())
        self.assertEqual([-3, -2, 0, -2], minExtrema[1].tolist())

        ## CASE 3
        # L3, R3 -- no edge MAX & no edge MAX
        s, t = S[2:-3], T[2:-3]

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        self.assertEqual([-3, 3, 9, 14, 19], maxExtrema[0].tolist())
        self.assertEqual([2, 4, 2, 5, 2], maxExtrema[1].tolist())
        self.assertEqual([0, 6, 11, 17], minExtrema[0].tolist())
        self.assertEqual([-2, -2, 0, 0], minExtrema[1].tolist())

        ## CASE 4
        # L4, R4 -- edge MAX & edge MAX
        s, t = S[3:-4], T[3:-4]

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        self.assertEqual([3, 9, 14], maxExtrema[0].tolist())
        self.assertEqual([4, 2, 5], maxExtrema[1].tolist())
        self.assertEqual([0, 6, 11, 17], minExtrema[0].tolist())
        self.assertEqual([-2, -2, 0, 0], minExtrema[1].tolist())
Exemplo n.º 14
0
    def test_bound_extrapolation_parabol(self):
        emd = EMD()
        emd.extrema_detection = "parabol"
        emd.nbsym = 1
        emd.DTYPE = np.float64

        S = [0, -3, 1, 4, 3, 2, -2, 0, 1, 2, 1, 0, 1, 2, 5, 4, 0, -2, -1]
        S = np.array(S)
        T = np.arange(len(S))

        pp = emd.prepare_points

        # There are 4 cases for both (L)eft and (R)ight ends. In case of left (L) bound:
        # L1) ,/ -- ext[0] is min, s[0] < ext[1] (1st max)
        # L2) / -- ext[0] is min, s[0] > ext[1] (1st max)
        # L3) ^. -- ext[0] is max, s[0] > ext[1] (1st min)
        # L4) \ -- ext[0] is max, s[0] < ext[1] (1st min)

        ## CASE 1
        # L1, R1 -- no edge MIN & no edge MIN
        s = S.copy()
        t = T.copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        maxExtrema = np.round(maxExtrema, decimals=3)
        minExtrema = np.round(minExtrema, decimals=3)

        self.assertEqual([-1.393, 3.25, 9, 14.25, 20.083],
                         maxExtrema[0].tolist())
        self.assertEqual([4.125, 4.125, 2, 5.125, 5.125],
                         maxExtrema[1].tolist())
        self.assertEqual([-4.31, 0.929, 6.167, 11, 17.167, 23.333],
                         minExtrema[0].tolist())
        self.assertEqual([-2.083, -3.018, -2.083, 0, -2.042, 0],
                         minExtrema[1].tolist())

        ## CASE 2
        # L2, R2 -- edge MIN, edge MIN
        s = S[1:-1].copy()
        t = T[1:-1].copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        maxExtrema = np.round(maxExtrema, decimals=3)
        minExtrema = np.round(minExtrema, decimals=3)

        self.assertEqual([-1.25, 3.25, 9, 14.25, 19.75],
                         maxExtrema[0].tolist())
        self.assertEqual([4.125, 4.125, 2, 5.125, 5.125],
                         maxExtrema[1].tolist())
        self.assertEqual([1, 6.167, 11, 17], minExtrema[0].tolist())
        self.assertEqual([-3, -2.083, 0, -2], minExtrema[1].tolist())

        ## CASE 3
        # L3, R3 -- no edge MAX & no edge MAX
        s = S[2:-3].copy()
        t = T[2:-3].copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        maxExtrema = np.round(maxExtrema, decimals=3)
        minExtrema = np.round(minExtrema, decimals=3)

        self.assertEqual([-2.5, 3.25, 9, 14.25, 19.5], maxExtrema[0].tolist())
        self.assertEqual([2, 4.125, 2, 5.125, 2], maxExtrema[1].tolist())
        self.assertEqual([0.333, 6.167, 11, 17.5], minExtrema[0].tolist())
        self.assertEqual([-2.083, -2.083, 0, 0], minExtrema[1].tolist())

        ## CASE 4
        # L4, R4 -- edge MAX & edge MAX
        s = S[3:-4].copy()
        t = T[3:-4].copy()

        maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s)

        # Should extrapolate left and right bounds
        maxExtrema, minExtrema = pp(t, s, \
                        maxPos, maxVal, minPos, minVal)

        maxExtrema = np.round(maxExtrema, decimals=3)
        minExtrema = np.round(minExtrema, decimals=3)

        self.assertEqual([3, 9, 14], maxExtrema[0].tolist())
        self.assertEqual([4, 2, 5], maxExtrema[1].tolist())
        self.assertEqual([-0.167, 6.167, 11, 17], minExtrema[0].tolist())
        self.assertEqual([-2.083, -2.083, 0, 0], minExtrema[1].tolist())
Exemplo n.º 15
0
import numpy as np
import pylab as plt
from PyEMD.EMD import EMD

t = np.linspace(0, 1, 200)
tt = t * t
s = np.cos(11 * 2 * np.pi * tt) + 6 * tt

IMF = EMD().emd(s, t)
N = IMF.shape[0] + 1

plt.subplot(N, 1, 1)
plt.plot(t, s, 'r')
plt.title("Input signal: $S(t)=cos(22\pi t^2) + 6t^2$")
plt.xlabel("Time [s]")

for n, imf in enumerate(IMF):
    plt.subplot(N, 1, n + 2)
    plt.plot(t, imf, 'g')
    plt.title("IMF " + str(n + 1))
    plt.xlabel("Time [s]")

plt.tight_layout()
plt.savefig('simple_example')
plt.show()
y_filtrada_dislex = butter_lowpass_filter(senial_indep_2500_muestras_dislexia,
                                          cutoff_l, fs, order)
y_filtrada_dislex = butter_highpass_filter(y_filtrada_dislex, cutoff_h, fs,
                                           order)

senial_indep_2500_muestras = y_filtrada
senial_indep_2500_muestras_dislexia = y_filtrada_dislex

# from PyEMD import EMD,visualisation
from PyEMD.EMD import EMD
from PyEMD.visualisation import Visualisation

# Perform decomposition
print("Performing decomposition... ")

emd = EMD()
emd.emd(senial_indep_2500_muestras, max_imf=5)

emd_dis = EMD()
emd_dis.emd(senial_indep_2500_muestras_dislexia, max_imf=5)

imfs, res = emd.get_imfs_and_residue()
imfs_dis, res_dis = emd_dis.get_imfs_and_residue()

vis = Visualisation()

print("Sujeto Normal")
vis.plot_imfs(imfs=imfs, residue=res, t=time, include_residue=False)
vis.plot_instant_freq(time, imfs=imfs)
vis.show()