Exemplo n.º 1
0
    def train_model(self, UI=None):
        if self.k <= 0 and UI is not None:
            UI.msg = QMessageBox()
            UI.msg.setIcon(QMessageBox.Warning)
            UI.msg.setWindowTitle("Warning")
            UI.msg.setText(
                "Anda harus membagi data menggunakan k-fold terlebih dahulu")
            UI.msg.setStandardButtons(QMessageBox.Ok)
            UI.msg.show()
            UI.statusBar().showMessage("Train and test failed")
            return False

        self.attrs, self.clfs, self.tfidfs = ([0 for i in range(self.k)
                                               ], [0 for i in range(self.k)],
                                              [0 for i in range(self.k)])
        el = QEventLoop()
        for i in range(self.k):
            if UI is not None:
                UI.logOutput.append(f"Train tree {i + 1}")
            params = {'i': i, 'remove_zero_tfidf': True, 'UI': UI}
            worker = Worker(self.mltrain_fn, params)
            worker.signals.result.connect(self.mltrain_result)
            self.threadpool.start(worker)

        self.threadpool.waitForDone()
        el.processEvents()
        el.exit()
        if UI is not None:
            UI.logOutput.append("Training completed")
        return self.attrs
Exemplo n.º 2
0
    def _killProcesses(processes: List[Popen]):
        if any(p.poll() is None for p in processes):
            loop = QEventLoop()
            QTimer.singleShot(videoSettings.VLC_SLEEP_TIME_LLmsJJ, loop.quit)
            loop.processEvents()

        for p in processes:
            if p.poll():
                continue
            logger.debug(f'Killing process {p.pid}')
            p.kill()
Exemplo n.º 3
0
    def load_hdf5_files(self, filenames):
        n_files = len(filenames)

        for f in filenames:
            if not h5py.is_hdf5(f):
                raise TypeError(f'{f} is not a valid HDF5 file.')

        loop = QEventLoop()

        progress = QProgressDialog("Loading location tables", None, 0, n_files,
                                   self._parent)
        plural = 'files' if n_files > 1 else 'file'
        progress.setWindowTitle(f"Loading {n_files} location table {plural}")
        progress.setModal(True)
        progress.setMinimumDuration(0)
        progress.setValue(0)
        progress.show()

        loop.processEvents()

        for i, filename in enumerate(filenames):
            status_message = f'loading {filename}'
            progress.setLabelText(status_message)
            progress.setValue(i)
            loop.processEvents()

            self.load_hdf5(filename)

            progress.setValue(i + 1)
            loop.processEvents()

        progress.close()
Exemplo n.º 4
0
    def _load_json(self, filename):
        """
        Loads all of the HDF5 files listed in the input JSON file.

        Args:

            filename: the fully-qualified name of a JSON file containing the names of HDF5 files produced by a
            DecontaminatedSpectraCollection.
        """
        if not os.path.isabs(filename):
            raise ValueError(
                "The filename must include the full (absolute) path.")

        dir_name = os.path.dirname(filename)

        with open(filename) as f:
            decontaminated_spectra_collection_filenames = json.load(f)

        for f in decontaminated_spectra_collection_filenames:
            full_name = os.path.join(dir_name, 'data', f)
            if not h5py.is_hdf5(full_name):
                raise TypeError(f'{f} is not a valid HDF5 file.')

        n_files = len(decontaminated_spectra_collection_filenames)

        loop = QEventLoop()

        progress = QProgressDialog(
            "Loading decontaminated spectra collections", None, 0, n_files,
            self._parent)
        plural = 'files' if n_files > 1 else 'file'
        progress.setWindowTitle(
            f"Loading {n_files} decontaminated spectra {plural}")
        progress.setModal(True)
        progress.setMinimumDuration(0)
        progress.setValue(0)
        progress.show()

        loop.processEvents()

        for i, decontaminated_spectra_filename in enumerate(
                decontaminated_spectra_collection_filenames):
            status_message = f'loading {decontaminated_spectra_filename}'
            progress.setLabelText(status_message)
            progress.setValue(i)
            loop.processEvents()
            full_name = os.path.join(dir_name, 'data',
                                     decontaminated_spectra_filename)

            self._load_hdf5(full_name)

            progress.setValue(i + 1)
            loop.processEvents()

        progress.close()
Exemplo n.º 5
0
class MainWindow(QMainWindow):

    donesignal = pyqtSignal(tuple)

    def __init__(self):
        super(MainWindow, self).__init__()
        self.ui = Ui_MainWindow()

        self.ui.setupUi(self)

        self.info = {}
        self.collected_data = []
        self.progress = 0  #actual img
        self.target = 20  #img to evaluate
        if debug:
            self.target = 20

        #self.ui.img = DicomWidget(self) #lavorare qua per piazzarlo
        self.ui.pushButtonStart.clicked.connect(lambda: self.load_at_start())

        if debug:
            ## Set the imgs
            pix_not = QPixmap(r'ui\img_not_sufficient.png').scaled(50, 50)
            self.ui.labelInsufficientImg.setPixmap(pix_not)

            pix_low = QPixmap(r'ui\img_low.png').scaled(50, 50)
            self.ui.labelLowImg.setPixmap(pix_low)

            pix_med = QPixmap(r'ui\img_medium.png').scaled(50, 50)
            self.ui.labelMediumImg.setPixmap(pix_med)

            pix_ok = QPixmap(r'ui\img_max.png').scaled(50, 50)
            self.ui.labelMaxImg.setPixmap(pix_ok)

        ## Set the imgs
        pix_not = QPixmap(
            r'C:\Users\IEO5572\PycharmProjects\qt_test_image\ui\img_not_sufficient.png'
        ).scaled(50, 50)
        self.ui.labelInsufficientImg.setPixmap(pix_not)

        pix_low = QPixmap(
            r'C:\Users\IEO5572\PycharmProjects\qt_test_image\ui\img_low.png'
        ).scaled(50, 50)
        self.ui.labelLowImg.setPixmap(pix_low)

        pix_med = QPixmap(
            r'C:\Users\IEO5572\PycharmProjects\qt_test_image\ui\img_medium.png'
        ).scaled(50, 50)
        self.ui.labelMediumImg.setPixmap(pix_med)

        pix_ok = QPixmap(
            r'C:\Users\IEO5572\PycharmProjects\qt_test_image\ui\img_max.png'
        ).scaled(50, 50)
        self.ui.labelMaxImg.setPixmap(pix_ok)

        self.ui.pushButtonInsufficient.clicked.connect(lambda: self.vote(0))
        self.ui.pushButtonLow.clicked.connect(lambda: self.vote(1))
        self.ui.pushButtonMedium.clicked.connect(lambda: self.vote(2))
        self.ui.pushButtonMax.clicked.connect(lambda: self.vote(3))

        self.pool = QThreadPool.globalInstance()
        self.pool.setMaxThreadCount(4)  # Use up to 8 threads

        #scroll_area = QtWidgets.QScrollArea()
        #scroll_area.setWidget(self.pix_label)

    def closeEvent(self, event):
        """Save collected data on exit"""

        df = pd.DataFrame.from_dict(self.collected_data)
        #df["CONTRASTO"]=self.contrast
        phys_name = self.ui.plainTextPhysSign.toPlainText()

        df.to_csv(
            os.path.join(
                r"\\portale.ieo.it\portale\Aree_Dipartimentali\G_RAD\2- G_RAD - ALTRE CARTELLE\MDC",
                f"collected_data_{phys_name}.csv"))
        print(f"[INFO] Output saved to collected_data.csv")
        can_exit = True
        if can_exit:
            event.accept()  # let the window close
        else:
            event.ignore()

    def vote(self, rate):
        """This function add to info rate and physician name"""
        phys_name = self.ui.plainTextPhysSign.toPlainText()
        self.info["rate"] = rate
        self.info["Physician"] = phys_name
        self.info["contrast"] = self.contrast[self.progress]
        self.collected_data.append(self.info)

        self.progress += 1
        self.ui.progressBar.setProperty("value", self.progress * 5)
        self.magic()

    def update_coordinates(self):
        self.ui.img.update_image()
        #mostrare le info di visualizzazione
        try:
            self.ui.infoLabel.setText(
                f"Series: {self.header.SeriesDescription} \nWidth:\t {self.ui.img.window_width}\nCenter:\t {self.ui.img.window_center}"
            )
        except Exception as e:
            print(e)
            self.ui.infoLabel.setText(
                f"Width:\t {self.ui.img.window_width}\nCenter:\t {self.ui.img.window_center}"
            )

    def cv2QtImg(self, path):
        cv_img = cv2.imread(path)
        rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
        h, w, ch = rgb_image.shape
        bytes_per_line = ch * w

        convert_to_Qt_format = QtGui.QImage(rgb_image.data, w, h,
                                            bytes_per_line,
                                            QtGui.QImage.Format_RGB888)

        #p = convert_to_Qt_format.scaled(self.display_width, self.display_height, Qt.KeepAspectRatio)
        return QPixmap.fromImage(convert_to_Qt_format)

    #LAVORARE QUA AGGIUNGERE MODIFICA CONTRASTO IMMAGINI E CARICARE DICOM

    def load_at_start(self):

        self.ui.pushButtonStart.setProperty("text", "Attendi")
        #load all target images
        self.studies = []
        self.study_headers = []
        self.study_mean_MA = []
        self.contrast = []
        self.patients = []
        for i in range(self.target):  #three images for security
            print(f"[INFO] loading {i} of {self.target} images..")

            self._file_name = self.sample()
            self.patients.append(self._file_name)

            #data,header,mean_mA=load_patient(self._file_name)

            #self.studies.append(data)
            #self.study_headers.append(header)
            #self.study_mean_MA.append(mean_mA)

        ###SEPARATE THREAD APPROACH

        self.wait_dialog()
        self.runAll()
        print("FINE", len(self.studies))

        print(f"[INFO] loading completed in {time.time()-start_time} s")
        self.ui.progressBar.setProperty("value", self.progress * 5)
        self.ui.pushButtonStart.setVisible(False)
        self.ui.pushButtonStart.setEnabled(False)
        #self.magic()

    def runAll(self):
        self.eventloop = QEventLoop()
        self.pool = QThreadPool.globalInstance()
        self.pool.setMaxThreadCount(4)
        self.donesignal.connect(self.add_patient)
        for j in range(5):
            for i in range(4):

                worker = AWorker(target=self.load_patient,
                                 args=(self.patients[4 * i + j], ))
                self.pool.start(worker)

        self.pool.waitForDone()
        self.eventloop.processEvents()
        self.eventloop.exit()
        # Now your data should have been appended to your list

    def load_patient(self, path):

        print("[INFO] Loading patient data..")
        if "NEW" in path:
            contrast_type = "new"
        elif "OLD" in path:
            contrast_type = "old"
        imgs = glob.glob(os.path.join(path, "*.dcm"))
        #

        try:
            data, header, mean_mA = DicomData.from_files(imgs)

        except:
            print("Could not load files")

        #emitting output
        #self.data.emit(data)
        #self.header.emit(header)
        #self.meanMa.emit(mean_mA)
        self.donesignal.emit((data, header, mean_mA, contrast_type))
        self.add_patient((data, header, mean_mA, contrast_type))
        return data, header, mean_mA

    def add_patient(self, data_tuple):

        print(f"[INFO] Adding patient..")
        act = self.ui.progressBar.value()
        self.ui.progressBar.setProperty("value", act + 5)

        data, header, mean_mA, contrast_type = data_tuple
        self.studies.append(data)
        self.study_headers.append(header)
        self.study_mean_MA.append(mean_mA)
        self.contrast.append(contrast_type)
        self.magic()

    def wait_dialog(self):
        msg = QMessageBox()
        msg.setIcon(QMessageBox.Information)

        msg.setText(
            "Caricamento esami in corso, per favore aspetta qualche minuto, l'immagine compararirà automaticamente."
        )
        msg.setWindowTitle("Caricamento")
        msg.setStandardButtons(QMessageBox.Ok | QMessageBox.Cancel)
        retval = msg.exec_()

    def showdialog(self):
        msg = QMessageBox()
        msg.setIcon(QMessageBox.Information)

        msg.setText("Fine degli esami caricati")
        msg.setInformativeText(
            "Puoi chiudere questo box e il programma cliccando sulla X")
        msg.setWindowTitle("Fine esami")
        msg.setDetailedText(
            "Ricorda di inserire il tuo nome nel box in alto a sinistra prima di chiudere."
        )
        msg.setStandardButtons(QMessageBox.Ok | QMessageBox.Cancel)
        retval = msg.exec_()

    def magic(self):
        """This function show the actual img"""

        print(self.progress)
        if self.progress < self.target:

            self.header = self.study_headers[self.progress]
            self.get_header_info(self.study_mean_MA[self.progress])
            self.ui.img.data = self.studies[self.progress]

            if self.progress == 0:  # if it's the first img set the width and the center to optimal values
                self.ui.img.window_center = 40.
                self.ui.img.window_width = 400.

            #self.setWindowTitle("IEO Dicom Viewer")
            #self.file_list = imgs

            self.ui.img.index = 0
            self.ui.img.update_image()
        else:
            ##DIALOG
            self.showdialog()

    def magic_old(self):
        self._file_name = self.sample()
        #     #list files
        imgs = glob.glob(os.path.join(self._file_name, "*.dcm"))
        #

        try:
            self._file_name = self.sample()
            #     #list files
            imgs = glob.glob(os.path.join(self._file_name, "*.dcm"))
            data, header, mean_mA = DicomData.from_files(imgs)
            self.header = header
            self.get_header_info(mean_mA)
            self.ui.img.data = data
            if self.progress == 0:  #if it's the first img set the width and the center to optimal values
                self.ui.img.window_center = 40.
                self.ui.img.window_width = 400.
            self.setWindowTitle("IEO Dicom Viewer")
            self.file_list = imgs
            self.ui.img.index = 0
            self.ui.img.update_image()

        except BaseException as exc:
            print(exc)
            self.ui.img.data = None
            self.setWindowTitle("IEO Dicom Viewer: No image")

    def sample(self):
        """Pic a random number and choose newest or older images"""
        r = randint(0, 1)
        if r:
            dir = NEW_DIR
            self.info["contrast_protocol"] = "new"
        else:
            dir = OLD_DIR
            self.info["contrast_protocol"] = "old"

        subjects = os.listdir(dir)
        rnd_sub_idx = randint(0, len(subjects) - 1)
        return os.path.join(dir, subjects[rnd_sub_idx])

    def get_header_info(self, mean_mA):
        test = self.header
        info = None

        try:
            info = {
                "name": test.PatientName,
                "sex": test.PatientSex,
                "age": test.PatientAge,
                "birthday": test.PatientBirthDate,
                "patient_ID": test.PatientID,
                "height": 0,
                "weight": 0,

                # study information
                "study_date": test.StudyDate,
                "study_time": test.StudyTime,
                "study_id": test.StudyID,
                "study_description": test.StudyDescription,
                "series_description": test.SeriesDescription,
                "model": test.ManufacturerModelName,
                "protocol": test.ProtocolName,

                # Other INFO
                "kVp": float(test.KVP),
                #   "mA": float(test.XRayTubeCurrent),  # QUA CAMBIA PER OGNI FETTA, FORSE ACQUISIZIONE?
                "mA": mean_mA,
                "contrast_agent": test.ContrastBolusAgent,
                "filter_type": test.FilterType,
                "convKernel": test.ConvolutionKernel,
            }

            try:
                info["height"] = test.PatientSize
                info["weight"] = test.PatientWeight
            except:
                print(f"[WARNING] Couldn't update PatientSize")

        except Exception as e:
            print(e)
            print(
                f"[INFO] An error occuered with {test.PatientName}. Saving your results"
            )
            self.close()

        self.info = info
        return info