Exemplo n.º 1
0
def pre(cfg):
    name = cfg["method"]
    sigma = cfg["sigma"]
    scale = cfg["scale"]
    K = cfg["K"]

    kernel = RBFKernel(sigma=sigma,scale=scale)
    fastLogDet = FastIVM(K, kernel, 1.0)

    if name == "Greedy":
        opt = Greedy(K, fastLogDet)
    if name == "IndependentSetImprovement":
        opt = IndependentSetImprovement(K, fastLogDet)
    elif name == "Random":
        opt = Random(K, fastLogDet, cfg["run_id"])
    elif name == "SieveStreaming":
        e = cfg["epsilon"]
        opt = SieveStreaming(K, fastLogDet, 1.0, e)
    elif name == "SieveStreaming++":
        e = cfg["epsilon"]
        opt = SieveStreamingPP(K, fastLogDet, 1.0, e)
    elif name == "Salsa":
        e = cfg["epsilon"]
        opt = Salsa(K, fastLogDet, 1.0, e)
    elif name == "ThreeSieves":
        e = cfg["epsilon"]
        T = cfg["T"]
        opt = ThreeSieves(K, fastLogDet, 1.0, e, "sieve", T)
    return opt
### SieveStreaming ### 
optimizers["SieveStreaming with IVM + RBF"] = SieveStreaming(K, ivm_rbf, 1.0, 0.1)
optimizers["SieveStreaming with IVM + poly kernel class"] = SieveStreaming(K, ivm_custom_kernel_class, 1.0, 0.5)
optimizers["SieveStreaming with IVM + poly kernel function"] = SieveStreaming(K, ivm_custom_kernel_function, 1.0, 0.5)
optimizers["SieveStreaming with custom IVM class"] = SieveStreaming(K, ivm_custom_class, 1.0, 0.1)
optimizers["SieveStreaming with custom IVM function"] = SieveStreaming(K, ivm_custom_function, 1.0, 0.1)

### SieveStreamingPP ### 
optimizers["SieveStreamingPP with IVM + RBF"] = SieveStreamingPP(K, ivm_rbf, 1.0, 0.1)
optimizers["SieveStreamingPP with IVM + poly kernel class"] = SieveStreamingPP(K, ivm_custom_kernel_class, 1.0, 0.1)
optimizers["SieveStreamingPP with IVM + poly kernel function"] = SieveStreamingPP(K, ivm_custom_kernel_function, 1.0, 0.1)
optimizers["SieveStreamingPP with custom IVM class"] = SieveStreamingPP(K, ivm_custom_class, 1.0, 0.1)
optimizers["SieveStreamingPP with custom IVM function"] = SieveStreamingPP(K, ivm_custom_function, 1.0, 0.1)

### Salsa ### 
optimizers["Salsa with IVM + RBF"] = Salsa(K, ivm_rbf, 1.0, 0.1)
optimizers["Salsa with IVM + poly kernel class"] = Salsa(K, ivm_custom_kernel_class, 1.0, 0.1)
optimizers["Salsa with IVM + poly kernel function"] = Salsa(K, ivm_custom_kernel_function, 1.0, 0.1)
optimizers["Salsa with custom IVM class"] = Salsa(K, ivm_custom_class, 1.0, 0.1)
optimizers["Salsa with custom IVM function"] = Salsa(K, ivm_custom_function, 1.0, 0.1)

### ThreeSieves ### 
optimizers["ThreeSieves with IVM + RBF"] = ThreeSieves(K, ivm_rbf, 1.0, 0.1, "sieve",5)
optimizers["ThreeSieves with IVM + poly kernel class"] = ThreeSieves(K, ivm_custom_kernel_class, 1.0, 0.01, "sieve",1)
optimizers["ThreeSieves with IVM + poly kernel function"] = ThreeSieves(K, ivm_custom_kernel_function, 1.0, 0.01, "sieve",1)
optimizers["ThreeSieves with custom IVM class"] = ThreeSieves(K, ivm_custom_class, 1.0, 0.1, "sieve",5)
optimizers["ThreeSieves with custom IVM function"] = ThreeSieves(K, ivm_custom_function, 1.0, 0.1, "sieve",5)

failed = False
for name, opt in optimizers.items():
    opt.fit(X)