Exemplo n.º 1
0
def Gs(i, j):
    return lambda: random.gauss(Qs[0][i, j], math.sqrt(Qs[1][i, j]))


import Pymatr.synthesis as Syn

from Pymatr.utils import numerical
L = red.dEigen
nsyn = 100
Gen = Syn.MatrixRngOpt(numerical(A), numerical(E / L), Gs, nsyn)


def average():
    s = sum(Gen())
    av = s / nsyn
    #	print(" \n sum {},  average: {}\n".format(r, av) )
    return av


lln = red.lln()
import Pymatr.byPieces as Bp
Bp.plot(lln)

import Pymatr.histogram as H
nsample = 1000
H.plot(nsample, average)
import matplotlib.pyplot as plt

#plt.xticks( [ Q1r[0].evalf() ], ["µ"] )
plt.show()
Exemplo n.º 2
0
\end{equation}
for our example, we have
''')
llnLaw = Lim.llnLimit(Q1r, paths, probP)
__latex__(r'''%
\begin{equation}
 p \p{ \frac{S(\vec{X})}{N} = s } = ''')
__pynclusion__(llnLaw.latex('s'))
__latex__(r''' 
\end{equation}
''')
plt.figure(figsize=Pl.fig_center)
import Pymatr.byPieces as Bp

Pl.limitTicks(5, 4)
Bp.plot(llnLaw, plot=lambda x, y: plt.plot(x, y, "k--"))

import Pymatr.Histogram as H
import math


def sample():
    s = sum(GenLLN())
    return s / nsyn


H.plot(nhist, sample, lambda x, y: plt.plot(x, y, "b-"))
plt.xlabel("$s$")
plt.ylabel("$\Psi(s)$")
plt.tight_layout()
plt.savefig("Figs/LLN.pdf")
Exemplo n.º 3
0
	return lambda : random.gauss( Qs[0][i,j], math.sqrt(Qs[1][i,j]) )  
import Pymatr.synthesis as Syn

from Pymatr.utils import numerical
L= red.dEigen
nsyn=100
Gen = Syn.MatrixRngOpt(numerical(A),numerical(E/L), Gs, nsyn)

def average():
	s= sum(Gen())
	av= s /nsyn
#	print(" \n sum {},  average: {}\n".format(r, av) )
	return av

lln=red.lln()
import Pymatr.byPieces as Bp
Bp.plot(lln)


import Pymatr.histogram as H
nsample=1000
H.plot(nsample, average)
import matplotlib.pyplot as plt


#plt.xticks( [ Q1r[0].evalf() ], ["µ"] )
plt.show()	



Exemplo n.º 4
0
\end{equation}
for our example, we have
''')
llnLaw=Lim.llnLimit(Q1r,paths,probP) 
__latex__(r'''%
\begin{equation}
 p \p{ \frac{S(\vec{X})}{N} = s } = ''')
__pynclusion__(llnLaw.latex('s'))
__latex__(r''' 
\end{equation}
''')
plt.figure(figsize=Pl.fig_center )
import Pymatr.byPieces as Bp 

Pl.limitTicks(5,4)
Bp.plot(llnLaw, plot=lambda x,y : plt.plot(x,y,"k--"))  

import Pymatr.Histogram as H
import math
def sample():
	s= sum(GenLLN())
	return s/nsyn
 
H.plot(nhist, sample, lambda x,y : plt.plot(x,y,"b-")  ) 
plt.xlabel("$s$")
plt.ylabel("$\Psi(s)$" )
plt.tight_layout()
plt.savefig("Figs/LLN.pdf")
plt.savefig("Figs/LLN.svg") 
__latex__(r'''%