Exemplo n.º 1
0
    def test_bad_pixel_map(self):

        bp_map = BadPixelMapModule(name_in="bp_map",
                                   dark_in_tag="dark",
                                   flat_in_tag="flat",
                                   bp_map_out_tag="bp_map",
                                   dark_threshold=0.99,
                                   flat_threshold=-0.99)

        self.pipeline.add_module(bp_map)

        self.pipeline.run()

        storage = DataStorage(self.test_dir + "/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["bp_map"]

        assert data[0, 0] == 1.
        assert data[30, 30] == 1.
        assert data[10, 10] == 0.
        assert data[12, 12] == 0.
        assert data[14, 14] == 0.
        assert data[20, 20] == 0.
        assert data[22, 22] == 0.
        assert data[24, 24] == 0.
        assert np.mean(data) == 0.9993

        storage.close_connection()
Exemplo n.º 2
0
    def test_create_storage_without_existing_database(self):
        storage = DataStorage(self.test_data)
        storage.open_connection()
        storage.m_data_bank["data"] = [0, 1, 2, 5, 7]

        assert storage.m_data_bank["data"][2] == 2
        assert storage.m_data_bank.keys() == ["data", ]

        storage.close_connection()

        os.remove(self.test_data)
Exemplo n.º 3
0
    def test_open_close_connection(self):
        storage = DataStorage(self.test_data)

        storage.open_connection()
        assert storage.m_open is True

        storage.open_connection()
        assert storage.m_open is True

        storage.close_connection()
        assert storage.m_open is False

        storage.close_connection()
        assert storage.m_open is False

        os.remove(self.test_data)
Exemplo n.º 4
0
    def test_dark_and_flat_calibration(self):

        dark = DarkCalibrationModule(name_in="dark",
                                     image_in_tag="images",
                                     dark_in_tag="dark",
                                     image_out_tag="dark_cal")

        self.pipeline.add_module(dark)

        flat = FlatCalibrationModule(name_in="flat",
                                     image_in_tag="dark_cal",
                                     flat_in_tag="flat",
                                     image_out_tag="flat_cal")

        self.pipeline.add_module(flat)

        self.pipeline.run()

        storage = DataStorage(self.test_dir + "/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["dark"]
        assert np.allclose(data[0, 10, 10],
                           3.528694163309295e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           7.368663496379876e-07,
                           rtol=limit,
                           atol=0.)

        data = storage.m_data_bank["flat"]
        assert np.allclose(data[0, 10, 10],
                           -0.0004053528990466237,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           -4.056978234798532e-07,
                           rtol=limit,
                           atol=0.)

        storage.close_connection()
Exemplo n.º 5
0
    def test_bad_pixel_sigma_filter(self):

        sigma = BadPixelSigmaFilterModule(name_in="sigma",
                                          image_in_tag="images",
                                          image_out_tag="sigma",
                                          box=9,
                                          sigma=5,
                                          iterate=1)

        self.pipeline.add_module(sigma)

        self.pipeline.run()

        storage = DataStorage(self.test_dir + "/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["sigma"]

        assert np.allclose(data[0, 0, 0],
                           0.00032486907273264834,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[0, 10, 10],
                           0.025022559679385093,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[0, 20, 20],
                           0.024962143884217046,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           6.721637736047109e-07,
                           rtol=limit,
                           atol=0.)

        storage.close_connection()
Exemplo n.º 6
0
    def test_bad_pixel_interpolation(self):

        interpolation = BadPixelInterpolationModule(
            name_in="interpolation",
            image_in_tag="images",
            bad_pixel_map_tag="bp_map",
            image_out_tag="interpolation",
            iterations=100)

        self.pipeline.add_module(interpolation)

        self.pipeline.run()

        storage = DataStorage(self.test_dir + "/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["interpolation"]

        assert np.allclose(data[0, 0, 0],
                           0.00032486907273264834,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[0, 10, 10],
                           1.0139222106683477e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[0, 20, 20],
                           -4.686852973820094e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           3.0499629451215465e-07,
                           rtol=limit,
                           atol=0.)

        storage.close_connection()
Exemplo n.º 7
0
    def test_fake_planet(self):

        read = FitsReadingModule(name_in="read",
                                 image_tag="read")

        self.pipeline.add_module(read)

        angle = AngleInterpolationModule(name_in="angle",
                                         data_tag="read")

        self.pipeline.add_module(angle)

        fake = FakePlanetModule(position=(0.5, 90.),
                                magnitude=5.,
                                psf_scaling=1.,
                                interpolation="spline",
                                name_in="fake",
                                image_in_tag="read",
                                psf_in_tag="read",
                                image_out_tag="fake",
                                verbose=True)

        self.pipeline.add_module(fake)

        simplex = SimplexMinimizationModule(position=(31., 49.),
                                            magnitude=5.,
                                            psf_scaling=-1.,
                                            name_in="simplex",
                                            image_in_tag="fake",
                                            psf_in_tag="read",
                                            res_out_tag="simplex_res",
                                            flux_position_tag="flux_position",
                                            merit="sum",
                                            aperture=0.05,
                                            sigma=0.027,
                                            tolerance=0.1,
                                            pca_number=2,
                                            cent_size=None,
                                            edge_size=None,
                                            extra_rot=0.)

        self.pipeline.add_module(simplex)

        pca = PcaPsfSubtractionModule(pca_numbers=(2, ),
                                      name_in="pca",
                                      images_in_tag="fake",
                                      reference_in_tag="fake",
                                      res_mean_tag="res_mean",
                                      res_median_tag=None,
                                      res_arr_out_tag=None,
                                      res_rot_mean_clip_tag=None,
                                      extra_rot=0.)

        self.pipeline.add_module(pca)

        false = FalsePositiveModule(position=(31., 49.),
                                    aperture=0.1,
                                    ignore=True,
                                    name_in="false",
                                    image_in_tag="res_mean",
                                    snr_out_tag="snr_fpf")

        self.pipeline.add_module(false)

        photometry = AperturePhotometryModule(radius=0.1,
                                              position=None,
                                              name_in="photometry",
                                              image_in_tag="read",
                                              phot_out_tag="photometry")

        self.pipeline.add_module(photometry)

        self.pipeline.run()

        storage = DataStorage(self.test_dir+"/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["read"]
        assert np.allclose(data[0, 10, 10], 0.00012958496246258364, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.00010029494781738066, rtol=limit, atol=0.)

        data = storage.m_data_bank["header_read/PARANG"]
        assert data[5] == 2.7777777777777777

        data = storage.m_data_bank["fake"]
        assert np.allclose(data[0, 49, 31], 0.00036532633147006946, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.0001012983225928772, rtol=limit, atol=0.)

        data = storage.m_data_bank["simplex_res"]
        assert np.allclose(data[46, 49, 31], 3.718481593648487e-05, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), -2.8892749617545238e-08, rtol=limit, atol=0.)

        data = storage.m_data_bank["flux_position"]
        assert np.allclose(data[46, 0], 31.276994533457994, rtol=limit, atol=0.)
        assert np.allclose(data[46, 1], 50.10345749706295, rtol=limit, atol=0.)
        assert np.allclose(data[46, 2], 0.5055288651354779, rtol=limit, atol=0.)
        assert np.allclose(data[46, 3], 89.6834045889695, rtol=limit, atol=0.)
        assert np.allclose(data[46, 4], 4.997674024675655, rtol=limit, atol=0.)

        data = storage.m_data_bank["res_mean"]
        assert np.allclose(data[0, 49, 31], 9.258255068620805e-05, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), -2.610863424405134e-08, rtol=limit, atol=0.)

        data = storage.m_data_bank["snr_fpf"]
        assert np.allclose(data[0, 2], 0.513710034941892, rtol=limit, atol=0.)
        assert np.allclose(data[0, 3], 93.01278750418334, rtol=limit, atol=0.)
        assert np.allclose(data[0, 4], 11.775360946367874, rtol=limit, atol=0.)
        assert np.allclose(data[0, 5], 2.9838031156970146e-08, rtol=limit, atol=0.)

        data = storage.m_data_bank["photometry"]
        assert np.allclose(data[0][0], 0.983374353660573, rtol=limit, atol=0.)
        assert np.allclose(data[39][0], 0.9841484973083519, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.9835085649488583, rtol=limit, atol=0.)

        storage.close_connection()
Exemplo n.º 8
0
    def test_star_alignment(self):

        read = FitsReadingModule(name_in="read",
                                 image_tag="read")

        self.pipeline.add_module(read)

        extraction = StarExtractionModule(name_in="extract",
                                          image_in_tag="read",
                                          image_out_tag="extract",
                                          image_size=0.6,
                                          fwhm_star=0.1,
                                          position=None)

        self.pipeline.add_module(extraction)

        align = StarAlignmentModule(name_in="align",
                                    image_in_tag="extract",
                                    ref_image_in_tag=None,
                                    image_out_tag="align",
                                    accuracy=10,
                                    resize=2)

        self.pipeline.add_module(align)

        shift = ShiftImagesModule((6., 4.),
                                  name_in="shift",
                                  image_in_tag="align",
                                  image_out_tag="shift")

        self.pipeline.add_module(shift)

        center = StarCenteringModule(name_in="center",
                                     image_in_tag="shift",
                                     image_out_tag="center",
                                     mask_out_tag=None,
                                     fit_out_tag="center_fit",
                                     method="full",
                                     interpolation="spline",
                                     radius=0.1,
                                     sign="positive",
                                     guess=(6., 4., 1., 1., 1., 0.))

        self.pipeline.add_module(center)

        self.pipeline.run()

        storage = DataStorage(self.test_dir+"/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["read"]
        assert np.allclose(data[0, 10, 10], 0.00012958496246258364, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 9.832838021311831e-05, rtol=limit, atol=0.)

        data = storage.m_data_bank["extract"]
        assert np.allclose(data[0, 10, 10], 0.05304008435511765, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.0020655767159466613, rtol=limit, atol=0.)

        data = storage.m_data_bank["header_extract/STAR_POSITION"]
        assert data[10, 0] ==  data[10, 1] == 75

        data = storage.m_data_bank["shift"]
        assert np.allclose(data[0, 10, 10], -4.341611534220891e-05, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.0005164420068450968, rtol=limit, atol=0.)

        data = storage.m_data_bank["center"]
        assert np.allclose(data[0, 10, 10], 4.128859892625027e-05, rtol=1e-4, atol=0.)
        assert np.allclose(np.mean(data), 0.0005163806188663894, rtol=1e-7, atol=0.)

        storage.close_connection()
Exemplo n.º 9
0
    def test_contrast_curve(self):

        read = FitsReadingModule(name_in="read", image_tag="read")

        self.pipeline.add_module(read)

        angle = AngleInterpolationModule(name_in="angle", data_tag="read")

        self.pipeline.add_module(angle)

        contrast = ContrastCurveModule(name_in="contrast",
                                       image_in_tag="read",
                                       psf_in_tag="read",
                                       pca_out_tag="pca",
                                       contrast_out_tag="limits",
                                       separation=(0.5, 0.6, 0.1),
                                       angle=(0., 360., 180.),
                                       magnitude=(7.5, 1.),
                                       sigma=5.,
                                       accuracy=1e-1,
                                       psf_scaling=1.,
                                       aperture=0.1,
                                       ignore=True,
                                       pca_number=15,
                                       norm=False,
                                       cent_size=None,
                                       edge_size=None,
                                       extra_rot=0.)

        self.pipeline.add_module(contrast)

        self.pipeline.run()

        storage = DataStorage(self.test_dir + "/PynPoint_database.hdf5")
        storage.open_connection()

        data = storage.m_data_bank["read"]
        assert np.allclose(data[0, 10, 10],
                           0.00012958496246258364,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           0.00010029494781738066,
                           rtol=limit,
                           atol=0.)

        data = storage.m_data_bank["header_read/PARANG"]
        assert data[5] == 2.7777777777777777

        data = storage.m_data_bank["pca"]
        assert np.allclose(data[9, 68, 49],
                           5.707647718560735e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           -3.66890878538392e-08,
                           rtol=limit,
                           atol=0.)

        data = storage.m_data_bank["pca"]
        assert np.allclose(data[21, 31, 50],
                           5.4392925807364694e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           -3.668908785383954e-08,
                           rtol=limit,
                           atol=0.)

        storage.close_connection()