Exemplo n.º 1
0
    def test_add_modules(self):
        pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)

        # --- Reading Modules ---
        # default location
        reading = FitsReadingModule(name_in="reading",
                                    input_dir=None,
                                    image_tag="im_arr")

        pipeline.add_module(reading)

        # no default location
        reading2 = FitsReadingModule(name_in="reading2",
                                     input_dir=self.test_dir,
                                     image_tag="im_arr2")

        pipeline.add_module(reading2)

        # --- Processing Module ---
        process = BadPixelSigmaFilterModule(image_in_tag="im_arr")

        pipeline.add_module(process)

        # --- Writing Module ---
        # default location
        write = FitsWritingModule(name_in="writing",
                                  file_name="result.fits",
                                  data_tag="im_arr")

        pipeline.add_module(write)

        # no default location
        write2 = FitsWritingModule(name_in="writing2",
                                   file_name="result.fits",
                                   data_tag="im_arr",
                                   output_dir=self.test_dir)

        pipeline.add_module(write2)

        with pytest.warns(UserWarning):
            pipeline.add_module(write2)

        pipeline.run()

        os.remove(self.test_dir+"result.fits")
        os.remove(self.test_data)

        # --- Reading Module ---
        # run_module

        pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)

        reading = FitsReadingModule(name_in="reading",
                                    input_dir=None,
                                    image_tag="im_arr")

        pipeline.add_module(reading)
        pipeline.run_module("reading")

        os.remove(self.test_data)
Exemplo n.º 2
0
    def test_run_non_valid_module_list(self):
        pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)

        # --- Reading Modules ---
        reading = FitsReadingModule(name_in="reading")

        pipeline.add_module(reading)

        # --- Processing Module ---
        process = BadPixelSigmaFilterModule(name_in="filter", image_in_tag="im_list")

        pipeline.add_module(process)

        # --- Writing Module ---
        write = FitsWritingModule(name_in="writing",
                                  file_name="result.fits",
                                  data_tag="im_list")

        pipeline.add_module(write)

        with pytest.raises(AttributeError):
            pipeline.run()

        with pytest.raises(AttributeError):
            pipeline.run_module("filter")

        with pytest.raises(AttributeError):
            pipeline.run_module("writing")

        assert pipeline.validate_pipeline_module("test") is None

        os.remove(self.test_data)
Exemplo n.º 3
0
    def test_run_non_existing_module(self):
        pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)

        with pytest.warns(UserWarning):
            pipeline.run_module("test")

        os.remove(self.test_data)
Exemplo n.º 4
0
class TestEndToEnd(object):
    def setup(self):
        self.test_dir = os.path.dirname(__file__) + "/"
        self.pipeline = Pypeline(self.test_dir, self.test_dir, self.test_dir)

    def test_read(self):
        read_fits = FitsReadingModule(name_in="read_fits",
                                      image_tag="im",
                                      overwrite=True)

        self.pipeline.add_module(read_fits)
        self.pipeline.run_module("read_fits")

        data = self.pipeline.get_data("im")

        assert np.allclose(data[0, 0, 0],
                           0.00032486907273264834,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           9.4518306864680034e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (82, 102, 100)

    def test_remove_last(self):
        remove_last = RemoveLastFrameModule(name_in="remove_last",
                                            image_in_tag="im",
                                            image_out_tag="im_last")

        self.pipeline.add_module(remove_last)
        self.pipeline.run_module("remove_last")

        data = self.pipeline.get_data("im_last")

        assert np.allclose(data[0, 0, 0],
                           0.00032486907273264834,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           9.9365399524407205e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 102, 100)

    def test_parang(self):
        angle = AngleInterpolationModule(name_in="angle", data_tag="im_last")

        self.pipeline.add_module(angle)
        self.pipeline.run_module("angle")

        files = self.pipeline.get_attribute("im_last", "FILES", static=False)
        parang = self.pipeline.get_attribute("im_last", "PARANG", static=False)

        assert files[0] == self.test_dir + 'adi01.fits'
        assert parang[1] == 1.1904761904761905

    def test_cut_lines(self):
        cut_lines = RemoveLinesModule(lines=(0, 0, 0, 2),
                                      name_in="cut_lines",
                                      image_in_tag="im_last",
                                      image_out_tag="im_cut")

        self.pipeline.add_module(cut_lines)
        self.pipeline.run_module("cut_lines")

        data = self.pipeline.get_data("im_cut")

        assert np.allclose(data[0, 0, 0],
                           0.00032486907273264834,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           0.00010141595132969683,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 100, 100)

    def test_background(self):
        background = MeanBackgroundSubtractionModule(shift=None,
                                                     cubes=1,
                                                     name_in="background",
                                                     image_in_tag="im_cut",
                                                     image_out_tag="im_bg")

        self.pipeline.add_module(background)
        self.pipeline.run_module("background")

        data = self.pipeline.get_data("im_bg")

        assert np.allclose(data[0, 0, 0],
                           0.00037132392435389595,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           2.3675404363850964e-07,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 100, 100)

    def test_bad_pixel(self):
        bad_pixel = BadPixelSigmaFilterModule(name_in="bad_pixel",
                                              image_in_tag="im_bg",
                                              image_out_tag="im_bp",
                                              box=9,
                                              sigma=8,
                                              iterate=3)

        self.pipeline.add_module(bad_pixel)
        self.pipeline.run_module("bad_pixel")

        data = self.pipeline.get_data("im_bp")

        assert np.allclose(data[0, 0, 0],
                           0.00037132392435389595,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           2.3675404363850964e-07,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 100, 100)

    def test_star(self):
        star = StarExtractionModule(name_in="star",
                                    image_in_tag="im_bp",
                                    image_out_tag="im_star",
                                    image_size=1.08,
                                    fwhm_star=0.0108)

        self.pipeline.add_module(star)
        self.pipeline.run_module("star")

        data = self.pipeline.get_data("im_star")

        assert np.allclose(data[0, 0, 0],
                           0.00018025424208141221,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           0.00063151691905138636,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 40, 40)

    def test_center(self):
        center = StarAlignmentModule(name_in="center",
                                     image_in_tag="im_star",
                                     ref_image_in_tag=None,
                                     image_out_tag="im_center",
                                     interpolation="spline",
                                     accuracy=10,
                                     resize=5)

        self.pipeline.add_module(center)
        self.pipeline.run_module("center")

        data = self.pipeline.get_data("im_center")

        assert np.allclose(data[1, 0, 0],
                           1.2113798549047296e-06,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[16, 0, 0],
                           1.0022456564129139e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[50, 0, 0],
                           1.7024977291686637e-06,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[67, 0, 0],
                           7.8143774182171561e-07,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           2.5260676762055473e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (78, 200, 200)

    def test_remove_frames(self):
        remove_frames = RemoveFramesModule(frames=(0, 15, 49, 66),
                                           name_in="remove_frames",
                                           image_in_tag="im_center",
                                           selected_out_tag="im_remove",
                                           removed_out_tag=None)

        self.pipeline.add_module(remove_frames)
        self.pipeline.run_module("remove_frames")

        data = self.pipeline.get_data("im_remove")

        assert np.allclose(data[0, 0, 0],
                           1.2113798549047296e-06,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[14, 0, 0],
                           1.0022456564129139e-05,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[47, 0, 0],
                           1.7024977291686637e-06,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[63, 0, 0],
                           7.8143774182171561e-07,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           2.5255308248050269e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (74, 200, 200)

    def test_subset(self):
        subset = StackAndSubsetModule(name_in="subset",
                                      image_in_tag="im_remove",
                                      image_out_tag="im_subset",
                                      random=37,
                                      stacking=2)

        self.pipeline.add_module(subset)
        self.pipeline.run_module("subset")

        data = self.pipeline.get_data("im_subset")

        assert np.allclose(data[0, 0, 0],
                           -1.9081971570461925e-06,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           2.5255308248050275e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (37, 200, 200)

    def test_pca(self):
        pca = PSFSubtractionModule(name_in="pca",
                                   pca_number=2,
                                   images_in_tag="im_subset",
                                   reference_in_tag="im_subset",
                                   res_arr_out_tag="res_arr",
                                   res_arr_rot_out_tag="res_rot",
                                   res_mean_tag="res_mean",
                                   res_median_tag="res_median",
                                   res_var_tag="res_var",
                                   res_rot_mean_clip_tag="res_rot_mean_clip",
                                   extra_rot=0.0,
                                   cent_size=0.1)

        self.pipeline.add_module(pca)
        self.pipeline.run_module("pca")

        data = self.pipeline.get_data("res_mean")

        assert np.allclose(data[154, 99],
                           0.0004308570688425797,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(np.mean(data),
                           9.372451154992271e-08,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (200, 200)