Exemplo n.º 1
0
def main():

    options = {

        # The main root TQSampleFolder name
        "master_sample_name": "samples",

        # Where the ntuples are located
        "ntuple_path": "/nfs-7/userdata/phchang/WWW_babies/WWW_v1.2.3/skim/",

        # Path to the config file that defines how the samples should be organized
        "sample_config_path": "samples.cfg",

        # The samples with "priority" (defined in sample_config_pat) values satisfying the following condition is looped over
        "priority_value": ">0",

        # The samples with "priority" (defined in sample_config_pat) values satisfying the following condition is NOT looped over
        "exclude_priority_value": "<-1",

        # N-cores
        "ncore": 4,

        # TQCuts config file
        "cuts": "cuts.cfg",

        # Histogram config file
        "histo": "histo.cfg",

        # Eventlist histogram
        "eventlist": "eventlist.cfg",

        # Custom observables (dictionary)
        "customobservables": {},

        # Custom observables (dictionary)
        "output_dir": "outputs/"
    }

    # First generate cuts.cfg file
    generate_cuts_config()

    # Analyze
    loop(options)

    # Create plots and tables
    samples = TQSampleFolder.loadSampleFolder("outputs/output.root:samples")
    bkg_path = [
        ("WWW", "/sig/www"),
        ("WHWWW", "/sig/whwww"),
    ]
    sig_path = [("WZ", "/bkg/WZ")]
    autoplot(samples,
             bkg_path=bkg_path,
             sig_path=sig_path,
             options={
                 "remove_underflow": True,
                 "signal_scale": "auto"
             })
    autotable(samples,
              "yield",
              bkg_path=bkg_path,
              sig_path=sig_path,
              options={"cuts": "cuts.cfg"})
Exemplo n.º 2
0
#!/bin/env python

import os
import sys
import ROOT
from QFramework import TQSampleFolder, TQXSecParser, TQCut, TQAnalysisSampleVisitor, TQSampleInitializer, TQCutflowAnalysisJob, TQCutflowPrinter, TQHistoMakerAnalysisJob
from rooutil import plottery_wrapper as p
from plottery import plottery as ply

try:
    tqsamplefolderpath = sys.argv[1]
except:
    tqsamplefolderpath = "output.root"

ROOT.gROOT.SetBatch(True)
samples = TQSampleFolder.loadSampleFolder(tqsamplefolderpath + ":samples")
samples_up = TQSampleFolder.loadSampleFolder("output_up.root:samples")
samples_dn = TQSampleFolder.loadSampleFolder("output_dn.root:samples")

output_plot_dir = "plots"

doW = False
docombinedqcdel = True

testsample = "/top"
testsamplename = "t#bar{t}"
testsamplelegendname = "t#bar{t}"
if doW:
    testsample = "/W/HT"
    #testsample = "/W"
    testsamplename = "W"
Exemplo n.º 3
0
def compute_fake_factor_1d(th1):
    for ix in xrange(0, th1.GetNbinsX() + 2):
        frnom = th1.GetBinContent(ix)
        frerr = th1.GetBinError(ix)
        fr = E(frnom, frerr)
        if fr.val != 0 and fr.val != 1:
            ff = fr / (E(1., 0.) - fr)
        else:
            ff = E(0., 0.)
        th1.SetBinContent(ix, ff.val)
        th1.SetBinError(ix, ff.err)


ROOT.gROOT.SetBatch(True)
samples = TQSampleFolder.loadSampleFolder("output.root:samples")

qcdloosemu = samples.getHistogram("/qcd/mu",
                                  "OneMuLoose/lep_ptcorrcoarse_vs_etacoarse")
qcdtightmu = samples.getHistogram("/qcd/mu",
                                  "OneMuTight/lep_ptcorrcoarse_vs_etacoarse")
qcdloosemu.Print("all")
qcdtightmu.Print("all")

qcdlooseel = samples.getHistogram("/qcd/el",
                                  "OneElLoose/lep_ptcorrcoarse_vs_etacoarse")
qcdtightel = samples.getHistogram("/qcd/el",
                                  "OneElTight/lep_ptcorrcoarse_vs_etacoarse")

qcdlooseelEM = samples.getHistogram(
    "/qcd/el/EM", "OneElLoose/lep_ptcorrcoarse_vs_etacoarse")
Exemplo n.º 4
0
#!/bin/env python

import os
import sys
import ROOT
from QFramework import TQSampleFolder, TQXSecParser, TQCut, TQAnalysisSampleVisitor, TQSampleInitializer, TQCutflowAnalysisJob, TQCutflowPrinter, TQHistoMakerAnalysisJob
from rooutil import plottery_wrapper as p
from plottery import plottery as ply
from rooutil.syncfiles.pyfiles.errors import E

ROOT.gROOT.SetBatch(True)
samples_cn = TQSampleFolder.loadSampleFolder("output.root:samples")
samples_up = TQSampleFolder.loadSampleFolder("output_up.root:samples")
samples_dn = TQSampleFolder.loadSampleFolder("output_dn.root:samples")

output_plot_dir = "plots"

#_________________________________________________________
def compute_fake_factor_1d(th1):
    for ix in xrange(0, th1.GetNbinsX()+2):
        frnom = th1.GetBinContent(ix)
        frerr = th1.GetBinError(ix)
        fr = E(frnom, frerr) 
        if fr.val != 0 and fr.val != 1:
            ff = fr / (E(1., 0.) - fr)
        else:
            ff = E(0., 0.)
        th1.SetBinContent(ix, ff.val)
        th1.SetBinError(ix, ff.err)

#___________________________________________________________________________
Exemplo n.º 5
0
def main(model="", mass=""):

    samples = TQSampleFolder.loadSampleFolder("outputs/output.root:samples")
    samples_jec_up = TQSampleFolder.loadSampleFolder(
        "outputs/output_jec_up.root:samples")
    samples_jec_dn = TQSampleFolder.loadSampleFolder(
        "outputs/output_jec_dn.root:samples")

    options = {

        # Signal name and TQSampleFolder path
        "sig":
        ("www", "/sig" if model == "" else "/bsm/{}/{}".format(model, mass)),

        # Background names and TQSampelFolder paths
        "bkgs": [
            ("lostlep", "/typebkg/lostlep/[ttZ+WZ+Other]"),
            ("fake", "/fake"),
            ("vbsww", "/typebkg/?/VBSWW"),
            ("ttw", "/typebkg/?/ttW"),
            ("photon", "/typebkg/photon/[ttZ+WZ+Other]"),
            ("qflip", "/typebkg/qflip/[ttZ+WZ+Other]"),
            ("prompt", "/typebkg/prompt/[ttZ+WZ+Other]"
             if model == "" else "/typebkg/prompt/[ttZ+WZ+Other]+sig"),
        ],

        # Data TQSampleFolder paths
        "data":
        "/data",

        # Counter names for getting yields
        "bins": [
            "SRSSeeFull",
            "SRSSemFull",
            "SRSSmmFull",
            "SideSSeeFull",
            "SideSSemFull",
            "SideSSmmFull",
            "SR0SFOSFull",
            "SR1SFOSFull",
            "SR2SFOSFull",
            #"SRNj1SSeeFull",
            #"SRNj1SSemFull",
            #"SRNj1SSmmFull",
        ],

        # TQSampleFolder object
        "nominal_sample":
        samples,

        # Control regions
        # The control regions will normalize the counts
        # The systematics
        "control_regions": {
            ("SRSSeeFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSeeFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SRSSemFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSemFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SRSSmmFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSmmFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SideSSeeFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSeeFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SideSSemFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSemFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SideSSmmFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCRSSmmFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SR1SFOSFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCR1SFOSFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            ("SR2SFOSFull", "/typebkg/lostlep/[ttZ+WZ+Other]"):
            ("WZCR2SFOSFull",
             "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"
             ),
            #("SRNj1SSeeFull", "/typebkg/lostlep/[ttZ+WZ+Other]") : ("WZCRNj1SSeeFull" , "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"),
            #("SRNj1SSemFull", "/typebkg/lostlep/[ttZ+WZ+Other]") : ("WZCRNj1SSemFull" , "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"),
            #("SRNj1SSmmFull", "/typebkg/lostlep/[ttZ+WZ+Other]") : ("WZCRNj1SSmmFull" , "/data-typebkg/qflip-typebkg/photon-typebkg/prompt-typebkg/fakes-typebkg/lostlep/VBSWW-typebkg/lostlep/ttW-sig"),
        },

        # Weight variation systematics that are saved in the "nominal_sample" TQSampleFolder
        # The nomenclature of the coutner names must be <BIN_COUNTER><SYSTS>Up and <BIN_COUNTER><SYSTS>Down
        # The keyword are the systematics and then the items list the processes to apply the systematics
        "systematics": [
            ("LepSF", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ]
            }),
            ("TrigSF", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ]
            }),
            ("BTagLF", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ]
            }),
            ("BTagHF", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ]
            }),
            ("Pileup", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ]
            }),
            ("FakeRateEl", {
                "procs_to_apply": ["fake"]
            }),
            ("FakeRateMu", {
                "procs_to_apply": ["fake"]
            }),
            ("FakeClosureEl", {
                "procs_to_apply": ["fake"]
            }),
            ("FakeClosureMu", {
                "procs_to_apply": ["fake"]
            }),
            ("PDF", {
                "procs_to_apply": ["www"]
            }),
            ("AlphaS", {
                "procs_to_apply": ["www"]
            }),
            ("Qsq", {
                "procs_to_apply": ["www"]
            }),
            ("JEC", {
                "procs_to_apply": [
                    "www", "vbsww", "ttw", "photon", "qflip", "prompt",
                    "lostlep"
                ],
                "syst_samples": {
                    "Up": samples_jec_up,
                    "Down": samples_jec_dn
                }
            }),
        ],
        "statistical":
        ["www", "vbsww", "ttw", "photon", "qflip", "prompt", "fake"],
        "flat_systematics": [
            ("VBSWWXSec", ["vbsww"], "1.2", ""),
            ("ttWXSec", ["ttw"], "1.2", ""),
            ("VBSWWVRSyst", ["vbsww"], "1.22", ""),
            ("ttWVRSyst", ["ttw"], "1.18", ""),
            ("QFlipVRSyst", ["qflip"], "1.5", ""),
            ("PhotonVRSyst", ["photon"], "1.5", ""),
            ("LostLepMll3LModeling", ["lostlep"], "1.082", "SFOS"),
            ("LostLepMllSSModeling", ["lostlep"], "1.053", "SS"),
            ("LostLepMjjModeling", ["lostlep"], "1.049", "SS"),
            ("LumSyst", ["vbsww", "ttw", "photon", "qflip", "prompt",
                         "www"], "1.025", ""),
        ],
    }

    return qutils.make_counting_experiment_statistics_data_card(options)
Exemplo n.º 6
0
#!/bin/env python

import os
import sys
import ROOT
from QFramework import TQSampleFolder, TQEventlistPrinter, TQTaggable
from rooutil import plottery_wrapper as p

ROOT.gROOT.SetBatch(True)

path = "eventlists/"
filename = sys.argv[1]

samples = TQSampleFolder.loadSampleFolder("{}:samples".format(filename))
printer = TQEventlistPrinter(samples)
printer.addCut("SRSSeeFull")
printer.addCut("SRSSemFull")
printer.addCut("SRSSmmFull")
printer.addCut("SideSSeeFull")
printer.addCut("SideSSemFull")
printer.addCut("SideSSmmFull")
printer.addCut("SR0SFOSFull")
printer.addCut("SR1SFOSFull")
printer.addCut("SR2SFOSFull")
printer.addCut("WZCRSSeeFull")
printer.addCut("WZCRSSemFull")
printer.addCut("WZCRSSmmFull")
printer.addCut("WZCR1SFOSFull")
printer.addCut("WZCR2SFOSFull")
#printer.addProcess("/sig/whwww")
printer.addProcess("/typebkg/lostlep/WZ")
Exemplo n.º 7
0
def main(transformation, p, batch_index):
    ott_parser = OTTParser()
    transformation = ott_parser.parse_file(transformation)
    transformation.set_root(transformation)
    batch_index = str(batch_index) or "all"
    transformation.compile({"-batch-index": batch_index})

    if p:
        print transformation

    for input in transformation.get("input"):
        sf = False
        print "Open: %s" % input.attributes['path']
        if "sample-folder" in input.attributes:
            input_file = TQSampleFolder.loadSampleFolder(
                "%s:%s" %
                (input.attributes['path'], input.attributes['sample-folder']))
            sf = True
        else:
            input_file = ROOT.TFile.Open(input.attributes['path'])

        for output in transformation.get("output"):
            output_file = ROOT.TFile.Open(output.attributes['path'],
                                          "RECREATE")

            for TH1F in output.get("TH1F"):
                output_file.cd()
                min = float(TH1F.get("min")[0].content)
                max = float(TH1F.get("max")[0].content)
                destination = TH1F.get("destination")[0].content
                bins = TH1F.get("bin")

                token = destination.rsplit("/", 1)
                if len(token) == 1:
                    token = "", token[0]

                if not output_file.Get(token[0]):
                    output_file.mkdir(token[0])

                output_file.cd(token[0])
                destination_name = token[1]

                print "  TH1F(\"%s\", \"\", %d, %g, %g) -> %s  %s" % \
                    (destination_name, len(bins), min, max,
                    output.attributes['path'], destination)

                histogram = ROOT.TH1F(destination_name, "", len(bins), min,
                                      max)
                for i, bin in enumerate(bins):
                    histogram.SetBinContent(i + 1, float(bin.content))
                histogram.Write()

            for duplicate in output.get("duplicate"):
                output_file.cd()
                source = duplicate.get("source")[0].content
                destination = duplicate.get("destination")[0].content

                token = destination.rsplit("/", 1)
                if len(token) == 1:
                    token = "", token[0]

                if not output_file.Get(token[0]):
                    output_file.mkdir(token[0])

                output_file.cd(token[0])
                destination_name = token[1]

                if sf:
                    cut = duplicate.get("cut")[0].content
                    histogram_name = duplicate.get("histogram")[0].content

                    histogram = input_file.getHistogram(
                        ROOT.TString(source),
                        ROOT.TString("%s/%s" % (cut, histogram_name)))
                    if not histogram:
                        continue
                    print "  %s  %s/%s -> %s  %s" % \
                        (source, cut, histogram_name,
                        output.attributes['path'], destination)
                    clone = histogram.Clone(destination_name)
                    clone.Write()
                # todo

            output_file.Close()
Exemplo n.º 8
0
def main(model="sm", mass0=-1, mass1=-1):

    # Print the model name and mass points
    print model, mass0, mass1

    # Suffis that will be attached to output file names for bookkeeping
    suffix = make_suffix(model, mass0, mass1)

    # Create directory where the outputs will be
    makedir("statinputs")

    # Open input files
    filename = "output_sf_applied.root"
    samples = TQSampleFolder.loadSampleFolder("{}:samples".format(filename))
    samples_jec_up = TQSampleFolder.loadSampleFolder("output_jec_up.root:samples")
    samples_jec_dn = TQSampleFolder.loadSampleFolder("output_jec_dn.root:samples")
    samples_gen_met = TQSampleFolder.loadSampleFolder("output_gen_met.root:samples")

    # Set the histogram name to perform the fit on (we use the 9 bin histogram
    histname = "{SRSSeeFull,SRSSemFull,SRSSmmFull,SideSSeeFull,SideSSemFull,SideSSmmFull,SR0SFOSFull,SR1SFOSFull,SR2SFOSFull}"

    # We have 8 categories for the fit
    processes = [ "vbsww" , "ttw" , "lostlep" , "photon" , "qflip" , "prompt" , "fake" , "www" ,]

    #######
    # NOTE "www" means "signal" - i.e. for whsusy model www = whsusy and www is included in prompt
    #######

    # Set the diectionary of the paths where we will retrieve the histograms from
    sampledirpaths = {
            "vbsww"   : "/typebkg/?/VBSWW",
            "ttw"     : "/typebkg/?/ttW",
            "lostlep" : "/typebkg/lostlep/[ttZ+WZ+Other]",
            "photon"  : "/typebkg/photon/[ttZ+WZ+Other]",
            "qflip"   : "/typebkg/qflip/[ttZ+WZ+Other]",
            "prompt"  : "/typebkg/prompt/[ttZ+WZ+Other]" if model == "sm" else "/typebkg/prompt/[ttZ+WZ+Other]+sig" if model != "whwww" else "/typebkg/prompt/[ttZ+WZ+Other]+sig/www",
            "fake"    : "/fake",
            "www"     : get_sigmodel_path(model, mass0, mass1),
            }

    # Create output file
    ofile = ROOT.TFile("statinputs/hist_{}.root".format(suffix), "recreate")
    ofile.cd()

    # Array of numbers where we will aggregate some results for nice tables
    rates = {}

    # Write histograms
    for process in processes:
        #print process, histname

        # Get nominal histogram
        h_nom = samples.getHistogram(sampledirpaths[process], histname).Clone(process)

        # If lost lepton get the nominal number directly from the AN Table 13
        if process == "lostlep": h_nom = set_to_lostlep_nominal_hist(h_nom)

        # If whsusy model with signal then get the average of the two histogram
        #if model == "whsusy" and process == "www": set_to_average_and_write_genmet_syst_hist(h_nom, samples_gen_met.getHistogram(sampledirpaths[process], histname).Clone(process))

        # Write nominal histogram
        #h_nom.Write()
        mask_bins(h_nom).Write()

        # Save the total number that will be used to output to datacards
        rates[process] = h_nom.Integral()

        # Nominal histogram errors are needed to be varied one by one to create an effective uncorrelated histograms
        if process != "lostlep" and process != "fake": write_nominal_stat_variations(h_nom, process)

        # Write systematic histograms that are from weight variations
        for systvar in systvars:

            # Some process or some variations do not need to be written
            if do_not_write_syst_hist(process, systvar, model):
                continue

            # Write the systvariation histograms
            #samples.getHistogram(sampledirpaths[process], histname.replace("Full", "Full" + systvar)).Clone(process + "_" + systvar).Write()
            mask_bins(samples.getHistogram(sampledirpaths[process], histname.replace("Full", "Full" + systvar)).Clone(process + "_" + systvar)).Write()

        # JEC systematic histograms need to be called from a different sample output
        if process != "fake" and process != "lostlep":
            #samples_jec_up.getHistogram(sampledirpaths[process], histname).Clone(process + "_JECUp").Write()
            #samples_jec_dn.getHistogram(sampledirpaths[process], histname).Clone(process + "_JECDown").Write()
            mask_bins(samples_jec_up.getHistogram(sampledirpaths[process], histname).Clone(process + "_JECUp")).Write()
            mask_bins(samples_jec_dn.getHistogram(sampledirpaths[process], histname).Clone(process + "_JECDown")).Write()

        # Lost lepton has special treatment
        if process == "lostlep":
            #write_lostlep_stat_variations(h_nom)
            #write_lostlep_syst_variations(h_nom)
            write_lostlep_CRstat_variations(h_nom)
            write_lostlep_TFstat_variations(h_nom)
            write_lostlep_TFsyst_variations(h_nom)
            write_lostlep_Mjjsyst_variations(h_nom)
            write_lostlep_MllSSsyst_variations(h_nom)
            write_lostlep_Mll3lsyst_variations(h_nom)

        # WWW signal theory systematics
        if model == "sm":
            if process == "www":
                write_www_theory_syst_variations(h_nom)

        # Fake has AR statistics
        if process == "fake":
            write_fake_ARstat_variations(h_nom)

    # Write data histogram
    h_data = samples.getHistogram("/typebkg", histname).Clone("data_obs")
    for i in xrange(0,h_data.GetNbinsX()+2):
        h_data.SetBinContent(i, int(h_data.GetBinContent(i)))
    #h_data.Write()
    mask_bins(h_data).Write()

    datacard="""imax 1 number of bins
jmax * number of processes
kmax * number of nuisance parameters
----------------------------------------------------------------------------------------------------------------------------------
shapes * * statinputs/hist_{}.root $PROCESS $PROCESS_$SYSTEMATIC
----------------------------------------------------------------------------------------------------------------------------------
bin          SR
observation  {:.1f}
----------------------------------------------------------------------------------------------------------------------------------
bin                                     SR           SR           SR           SR           SR           SR           SR           SR
process                                 0            1            2            3            4            5            6            7
process                                 www          fake         photon       lostlep      qflip        prompt       ttw          vbsww
rate                                    {:<6.3f}       {:<6.3f}       {:<6.3f}       {:<6.3f}       {:<6.3f}       {:<6.3f}       {:<6.3f}       {:<6.3f}
----------------------------------------------------------------------------------------------------------------------------------
JEC                     shape           1            -            1            -            -            1            1            1
LepSF                   shape           1            -            1            -            -            1            1            1
TrigSF                  shape           1            -            1            -            -            1            1            1
BTagHF                  shape           1            -            1            -            -            1            1            1
BTagLF                  shape           1            -            1            -            -            1            1            1
Pileup                  shape           1            -            1            -            -            1            1            1
FakeRateEl              shape           -            1            -            -            -            -            -            -
FakeRateMu              shape           -            1            -            -            -            -            -            -
FakeClosureEl           shape           -            1            -            -            -            -            -            -
FakeClosureMu           shape           -            1            -            -            -            -            -            -
LostLepSyst             shape           -            -            -            1            -            -            -            -
MjjModeling             shape           -            -            -            1            -            -            -            -
MllSSModeling           shape           -            -            -            1            -            -            -            -
Mll3lModeling           shape           -            -            -            1            -            -            -            -
SigXSec                 lnN             1.06         -            -            -            -            -            -            -
LumSyst                 lnN             1.025        -            1.025        -            1.025        1.025        1.025        1.025
vbsww_xsec              lnN             -            -            -            -            -            -            -            1.20
vbsww_validation        lnN             -            -            -            -            -            -            -            1.22
ttw_xsec                lnN             -            -            -            -            -            -            1.20         -
ttw_validation          lnN             -            -            -            -            -            -            1.18         -
photon_syst             lnN             -            -            1.50         -            -            -            -            -
qflip_syst              lnN             -            -            -            -            1.50         -            -            -
www_stat_in_ee          shape           1            -            -            -            -            -            -            -
www_stat_in_em          shape           1            -            -            -            -            -            -            -
www_stat_in_mm          shape           1            -            -            -            -            -            -            -
www_stat_out_ee         shape           1            -            -            -            -            -            -            -
www_stat_out_em         shape           1            -            -            -            -            -            -            -
www_stat_out_mm         shape           1            -            -            -            -            -            -            -
www_stat_0sfos          shape           1            -            -            -            -            -            -            -
www_stat_1sfos          shape           1            -            -            -            -            -            -            -
www_stat_2sfos          shape           1            -            -            -            -            -            -            -
fake_ARstat_in_ee       shape           -            1            -            -            -            -            -            -
fake_ARstat_in_em       shape           -            1            -            -            -            -            -            -
fake_ARstat_in_mm       shape           -            1            -            -            -            -            -            -
fake_ARstat_out_ee      shape           -            1            -            -            -            -            -            -
fake_ARstat_out_em      shape           -            1            -            -            -            -            -            -
fake_ARstat_out_mm      shape           -            1            -            -            -            -            -            -
fake_ARstat_0sfos       shape           -            1            -            -            -            -            -            -
fake_ARstat_1sfos       shape           -            1            -            -            -            -            -            -
fake_ARstat_2sfos       shape           -            1            -            -            -            -            -            -
photon_stat_in_ee       shape           -            -            1            -            -            -            -            -
photon_stat_in_em       shape           -            -            1            -            -            -            -            -
photon_stat_in_mm       shape           -            -            1            -            -            -            -            -
photon_stat_out_ee      shape           -            -            1            -            -            -            -            -
photon_stat_out_em      shape           -            -            1            -            -            -            -            -
photon_stat_out_mm      shape           -            -            1            -            -            -            -            -
photon_stat_0sfos       shape           -            -            1            -            -            -            -            -
photon_stat_1sfos       shape           -            -            1            -            -            -            -            -
photon_stat_2sfos       shape           -            -            1            -            -            -            -            -
lostlep_stat_in_ee      shape           -            -            -            1            -            -            -            -
lostlep_stat_in_em      shape           -            -            -            1            -            -            -            -
lostlep_stat_in_mm      shape           -            -            -            1            -            -            -            -
lostlep_stat_out_ee     shape           -            -            -            1            -            -            -            -
lostlep_stat_out_em     shape           -            -            -            1            -            -            -            -
lostlep_stat_out_mm     shape           -            -            -            1            -            -            -            -
lostlep_stat_0sfos      shape           -            -            -            1            -            -            -            -
lostlep_stat_1sfos      shape           -            -            -            1            -            -            -            -
lostlep_stat_2sfos      shape           -            -            -            1            -            -            -            -
qflip_stat_in_ee        shape           -            -            -            -            1            -            -            -
qflip_stat_in_em        shape           -            -            -            -            1            -            -            -
qflip_stat_in_mm        shape           -            -            -            -            1            -            -            -
qflip_stat_out_ee       shape           -            -            -            -            1            -            -            -
qflip_stat_out_em       shape           -            -            -            -            1            -            -            -
qflip_stat_out_mm       shape           -            -            -            -            1            -            -            -
qflip_stat_0sfos        shape           -            -            -            -            1            -            -            -
qflip_stat_1sfos        shape           -            -            -            -            1            -            -            -
qflip_stat_2sfos        shape           -            -            -            -            1            -            -            -
prompt_stat_in_ee       shape           -            -            -            -            -            1            -            -
prompt_stat_in_em       shape           -            -            -            -            -            1            -            -
prompt_stat_in_mm       shape           -            -            -            -            -            1            -            -
prompt_stat_out_ee      shape           -            -            -            -            -            1            -            -
prompt_stat_out_em      shape           -            -            -            -            -            1            -            -
prompt_stat_out_mm      shape           -            -            -            -            -            1            -            -
prompt_stat_0sfos       shape           -            -            -            -            -            1            -            -
prompt_stat_1sfos       shape           -            -            -            -            -            1            -            -
prompt_stat_2sfos       shape           -            -            -            -            -            1            -            -
ttw_stat_in_ee          shape           -            -            -            -            -            -            1            -
ttw_stat_in_em          shape           -            -            -            -            -            -            1            -
ttw_stat_in_mm          shape           -            -            -            -            -            -            1            -
ttw_stat_out_ee         shape           -            -            -            -            -            -            1            -
ttw_stat_out_em         shape           -            -            -            -            -            -            1            -
ttw_stat_out_mm         shape           -            -            -            -            -            -            1            -
ttw_stat_0sfos          shape           -            -            -            -            -            -            1            -
ttw_stat_1sfos          shape           -            -            -            -            -            -            1            -
ttw_stat_2sfos          shape           -            -            -            -            -            -            1            -
vbsww_stat_in_ee        shape           -            -            -            -            -            -            -            1
vbsww_stat_in_em        shape           -            -            -            -            -            -            -            1
vbsww_stat_in_mm        shape           -            -            -            -            -            -            -            1
vbsww_stat_out_ee       shape           -            -            -            -            -            -            -            1
vbsww_stat_out_em       shape           -            -            -            -            -            -            -            1
vbsww_stat_out_mm       shape           -            -            -            -            -            -            -            1
vbsww_stat_0sfos        shape           -            -            -            -            -            -            -            1
vbsww_stat_1sfos        shape           -            -            -            -            -            -            -            1
vbsww_stat_2sfos        shape           -            -            -            -            -            -            -            1
lostlep_CRstat_ee       shape           -            -            -            1            -            -            -            -
lostlep_CRstat_em       shape           -            -            -            1            -            -            -            -
lostlep_CRstat_mm       shape           -            -            -            1            -            -            -            -
lostlep_CRstat_0sfos    shape           -            -            -            1            -            -            -            -
lostlep_CRstat_1sfos    shape           -            -            -            1            -            -            -            -
lostlep_CRstat_2sfos    shape           -            -            -            1            -            -            -            -
""".format(suffix, h_data.Integral(), rates["www"], rates["fake"], rates["photon"], rates["lostlep"], rates["qflip"], rates["prompt"], rates["ttw"], rates["vbsww"])

    if model == "sm":
        datacard += """SigPDF                  shape           1            -            -            -            -            -            -            -
SigQsq                  shape           1            -            -            -            -            -            -            -
SigAlpha                shape           1            -            -            -            -            -            -            -
"""
    if model == "whsusy":
        datacard += """ISR                     shape           1            -            -            -            -            -            -            -
Qsq                     shape           1            -            -            -            -            -            -            -
PDF                     shape           1            -            -            -            -            -            -            -
AlphaS                  shape           1            -            -            -            -            -            -            -
GenMET                  shape           1            -            -            -            -            -            -            -
"""

    f = open('statinputs/datacard_{}.txt'.format(suffix), 'w')
    f.write(datacard)
    f.close()


    ofile.Close()