class BlackLittermanOptimizationPortfolioConstructionModel(
        PortfolioConstructionModel):
    def __init__(self,
                 lookback=1,
                 period=63,
                 resolution=Resolution.Daily,
                 risk_free_rate=0,
                 delta=2.5,
                 tau=0.05,
                 optimizer=None):
        """Initialize the model
        Args:
            lookback(int): Historical return lookback period
            period(int): The time interval of history price to calculate the weight
            resolution: The resolution of the history price
            risk_free_rate(float): The risk free rate
            delta(float): The risk aversion coeffficient of the market portfolio
            tau(float): The model parameter indicating the uncertainty of the CAPM prior"""
        self.lookback = lookback
        self.period = period
        self.resolution = resolution
        self.risk_free_rate = risk_free_rate
        self.delta = delta
        self.tau = tau
        self.optimizer = MaximumSharpeRatioPortfolioOptimizer(
            risk_free_rate=risk_free_rate) if optimizer is None else optimizer

        self.removedSymbols = []
        self.symbolDataBySymbol = {}

        self.insightCollection = InsightCollection()
        self.nextExpiryTime = UTCMIN
        self.rebalancingTime = UTCMIN
        self.rebalancingPeriod = Extensions.ToTimeSpan(resolution)

    def CreateTargets(self, algorithm, insights):
        """
        Create portfolio targets from the specified insights
        Args:
            algorithm: The algorithm instance
            insights: The insights to create portfolio targets from
        Returns:
            An enumerable of portfolio targets to be sent to the execution model
        """
        targets = []

        if (algorithm.UtcTime <= self.nextExpiryTime
                and algorithm.UtcTime <= self.rebalancingTime
                and len(insights) == 0 and self.removedSymbols is None):
            return targets

        insights = PortfolioConstructionModel.FilterInvalidInsightMagnitude(
            algorithm, insights)

        self.insightCollection.AddRange(insights)

        # Create flatten target for each security that was removed from the universe
        if self.removedSymbols is not None:
            universeDeselectionTargets = [
                PortfolioTarget(symbol, 0) for symbol in self.removedSymbols
            ]
            targets.extend(universeDeselectionTargets)
            self.removedSymbols = None

        # Get insight that haven't expired of each symbol that is still in the universe
        activeInsights = self.insightCollection.GetActiveInsights(
            algorithm.UtcTime)

        # Get the last generated active insight for each symbol
        lastActiveInsights = []
        for sourceModel, f in groupby(
                sorted(activeInsights, key=lambda ff: ff.SourceModel),
                lambda fff: fff.SourceModel):
            for symbol, g in groupby(sorted(list(f), key=lambda gg: gg.Symbol),
                                     lambda ggg: ggg.Symbol):
                lastActiveInsights.append(
                    sorted(g, key=lambda x: x.GeneratedTimeUtc)[-1])

        # Get view vectors
        P, Q = self.get_views(lastActiveInsights)
        if P is not None:

            returns = dict()

            # Updates the BlackLittermanSymbolData with insights
            # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame
            for insight in lastActiveInsights:
                symbol = insight.Symbol
                symbolData = self.symbolDataBySymbol.get(
                    symbol,
                    self.BlackLittermanSymbolData(insight.Symbol,
                                                  self.lookback, self.period))
                if insight.Magnitude is None:
                    algorithm.SetRunTimeError(
                        ArgumentNullExceptionArgumentNullException(
                            'BlackLittermanOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please make sure your Alpha Model is generating Insights with the Magnitude property set.'
                        ))
                symbolData.Add(algorithm.Time, insight.Magnitude)
                returns[symbol] = symbolData.Return

            returns = pd.DataFrame(returns)

            # Calculate prior estimate of the mean and covariance
            Pi, Sigma = self.get_equilibrium_return(returns)

            # Calculate posterior estimate of the mean and covariance
            Pi, Sigma = self.apply_blacklitterman_master_formula(
                Pi, Sigma, P, Q)

            # Create portfolio targets from the specified insights
            weights = self.optimizer.Optimize(returns, Pi, Sigma)
            weights = pd.Series(weights, index=Sigma.columns)

            for symbol, weight in weights.items():
                target = PortfolioTarget.Percent(algorithm, symbol, weight)
                if target is not None:
                    targets.append(target)

        # Get expired insights and create flatten targets for each symbol
        expiredInsights = self.insightCollection.RemoveExpiredInsights(
            algorithm.UtcTime)

        expiredTargets = []
        for symbol, f in groupby(expiredInsights, lambda x: x.Symbol):
            if not self.insightCollection.HasActiveInsights(
                    symbol, algorithm.UtcTime):
                expiredTargets.append(PortfolioTarget(symbol, 0))
                continue

        targets.extend(expiredTargets)

        self.nextExpiryTime = self.insightCollection.GetNextExpiryTime()
        if self.nextExpiryTime is None:
            self.nextExpiryTime = UTCMIN

        self.rebalancingTime = algorithm.UtcTime + self.rebalancingPeriod

        return targets

    def OnSecuritiesChanged(self, algorithm, changes):
        '''Event fired each time the we add/remove securities from the data feed
        Args:
            algorithm: The algorithm instance that experienced the change in securities
            changes: The security additions and removals from the algorithm'''

        # Get removed symbol and invalidate them in the insight collection
        self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities]
        self.insightCollection.Clear(self.removedSymbols)

        for symbol in self.removedSymbols:
            symbolData = self.symbolDataBySymbol.pop(symbol, None)
            if symbolData is not None:
                symbolData.Reset()

        # initialize data for added securities
        addedSymbols = [x.Symbol for x in changes.AddedSecurities]
        history = algorithm.History(addedSymbols, self.lookback * self.period,
                                    self.resolution)

        for symbol in addedSymbols:
            symbolData = self.BlackLittermanSymbolData(symbol, self.lookback,
                                                       self.period)

            if not history.empty:
                ticker = SymbolCache.GetTicker(symbol)

                if ticker not in history.index.levels[0]:
                    Log.Trace(
                        f'BlackLittermanOptimizationPortfolioConstructionModel.OnSecuritiesChanged: {ticker} not found in history data frame.'
                    )
                    continue

                symbolData.WarmUpIndicators(history.loc[ticker])

            self.symbolDataBySymbol[symbol] = symbolData

    def apply_blacklitterman_master_formula(self, Pi, Sigma, P, Q):
        '''Apply Black-Litterman master formula
        http://www.blacklitterman.org/cookbook.html
        Args:
            Pi: Prior/Posterior mean array
            Sigma: Prior/Posterior covariance matrix
            P: A matrix that identifies the assets involved in the views (size: K x N)
            Q: A view vector (size: K x 1)'''
        ts = self.tau * Sigma

        # Create the diagonal Sigma matrix of error terms from the expressed views
        omega = np.dot(np.dot(P, ts), P.T) * np.eye(Q.shape[0])
        if np.linalg.det(omega) == 0:
            return Pi, Sigma

        A = np.dot(np.dot(ts, P.T), inv(np.dot(np.dot(P, ts), P.T) + omega))

        Pi = np.squeeze(
            np.asarray(
                (np.expand_dims(Pi, axis=0).T +
                 np.dot(A, (Q - np.expand_dims(np.dot(P, Pi.T), axis=1))))))

        M = ts - np.dot(np.dot(A, P), ts)
        Sigma = (Sigma + M) * self.delta

        return Pi, Sigma

    def get_equilibrium_return(self, returns):
        '''Calculate equilibrium returns and covariance
        Args:
            returns: Matrix of returns where each column represents a security and each row returns for the given date/time (size: K x N)
        Returns:
            equilibrium_return: Array of double of equilibrium returns
            cov: Multi-dimensional array of double with the portfolio covariance of returns (size: K x K)'''

        size = len(returns.columns)
        # equal weighting scheme
        W = np.array([1 / size] * size)
        # the covariance matrix of excess returns (N x N matrix)
        cov = returns.cov() * 252
        # annualized return
        annual_return = np.sum(((1 + returns.mean())**252 - 1) * W)
        # annualized variance of return
        annual_variance = dot(W.T, dot(cov, W))
        # the risk aversion coefficient
        risk_aversion = (annual_return - self.risk_free_rate) / annual_variance
        # the implied excess equilibrium return Vector (N x 1 column vector)
        equilibrium_return = dot(dot(risk_aversion, cov), W)

        return equilibrium_return, cov

    def get_views(self, insights):
        '''Generate views from multiple alpha models
        Args
            insights: Array of insight that represent the investors' views
        Returns
            P: A matrix that identifies the assets involved in the views (size: K x N)
            Q: A view vector (size: K x 1)'''
        try:
            P = {}
            Q = {}
            for model, group in groupby(insights, lambda x: x.SourceModel):
                group = list(group)

                up_insights_sum = 0.0
                dn_insights_sum = 0.0
                for insight in group:
                    if insight.Direction == InsightDirection.Up:
                        up_insights_sum = up_insights_sum + np.abs(
                            insight.Magnitude)
                    if insight.Direction == InsightDirection.Down:
                        dn_insights_sum = dn_insights_sum + np.abs(
                            insight.Magnitude)

                q = up_insights_sum if up_insights_sum > dn_insights_sum else dn_insights_sum
                if q == 0:
                    continue

                Q[model] = q

                # generate the link matrix of views: P
                P[model] = dict()
                for insight in group:
                    value = insight.Direction * np.abs(insight.Magnitude)
                    P[model][insight.Symbol] = value / q
                # Add zero for other symbols that are listed but active insight
                for symbol in self.symbolDataBySymbol.keys():
                    if symbol not in P[model]:
                        P[model][symbol] = 0

            Q = np.array([[x] for x in Q.values()])
            if len(Q) > 0:
                P = np.array([list(x.values()) for x in P.values()])
                return P, Q
        except:
            pass

        return None, None

    class BlackLittermanSymbolData:
        '''Contains data specific to a symbol required by this model'''
        def __init__(self, symbol, lookback, period):
            self.symbol = symbol
            self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback)
            self.roc.Updated += self.OnRateOfChangeUpdated
            self.window = RollingWindow[IndicatorDataPoint](period)

        def Reset(self):
            self.roc.Updated -= self.OnRateOfChangeUpdated
            self.roc.Reset()
            self.window.Reset()

        def WarmUpIndicators(self, history):
            for tuple in history.itertuples():
                self.roc.Update(tuple.Index, tuple.close)

        def OnRateOfChangeUpdated(self, roc, value):
            if roc.IsReady:
                self.window.Add(value)

        def Add(self, time, value):
            item = IndicatorDataPoint(self.symbol, time, value)
            self.window.Add(item)

        @property
        def Return(self):
            return pd.Series(data=[float(x.Value) for x in self.window],
                             index=[x.EndTime for x in self.window])

        @property
        def IsReady(self):
            return self.window.IsReady

        def __str__(self, **kwargs):
            return '{}: {:.2%}'.format(self.roc.Name,
                                       (1 + self.window[0])**252 - 1)
Exemplo n.º 2
0
class EqualWeightingPortfolioConstructionModel(PortfolioConstructionModel):
    '''Provides an implementation of IPortfolioConstructionModel that gives equal weighting to all securities.
    The target percent holdings of each security is 1/N where N is the number of securities.
    For insights of direction InsightDirection.Up, long targets are returned and
    for insights of direction InsightDirection.Down, short targets are returned.'''
    def __init__(self, resolution=Resolution.Daily):
        '''Initialize a new instance of EqualWeightingPortfolioConstructionModel
        Args:
            resolution: Rebalancing frequency'''
        self.insightCollection = InsightCollection()
        self.removedSymbols = []
        self.nextExpiryTime = UTCMIN
        self.rebalancingTime = UTCMIN
        self.rebalancingPeriod = Extensions.ToTimeSpan(resolution)

    def CreateTargets(self, algorithm, insights):
        '''Create portfolio targets from the specified insights
        Args:
            algorithm: The algorithm instance
            insights: The insights to create portoflio targets from
        Returns:
            An enumerable of portoflio targets to be sent to the execution model'''

        targets = []

        if (algorithm.UtcTime <= self.nextExpiryTime
                and algorithm.UtcTime <= self.rebalancingTime
                and len(insights) == 0 and self.removedSymbols is None):
            return targets

        self.insightCollection.AddRange(insights)

        # Create flatten target for each security that was removed from the universe
        if self.removedSymbols is not None:
            universeDeselectionTargets = [
                PortfolioTarget(symbol, 0) for symbol in self.removedSymbols
            ]
            targets.extend(universeDeselectionTargets)
            self.removedSymbols = None

        # Get insight that haven't expired of each symbol that is still in the universe
        activeInsights = self.insightCollection.GetActiveInsights(
            algorithm.UtcTime)

        # Get the last generated active insight for each symbol
        lastActiveInsights = []
        for symbol, g in groupby(activeInsights, lambda x: x.Symbol):
            lastActiveInsights.append(
                sorted(g, key=lambda x: x.GeneratedTimeUtc)[-1])

        # give equal weighting to each security
        count = sum(x.Direction != InsightDirection.Flat
                    for x in lastActiveInsights)
        percent = 0 if count == 0 else 1.0 / count

        errorSymbols = {}
        for insight in lastActiveInsights:
            target = PortfolioTarget.Percent(algorithm, insight.Symbol,
                                             insight.Direction * percent)
            if not target is None:
                targets.append(target)
            else:
                errorSymbols[insight.Symbol] = insight.Symbol

        # Get expired insights and create flatten targets for each symbol
        expiredInsights = self.insightCollection.RemoveExpiredInsights(
            algorithm.UtcTime)

        expiredTargets = []
        for symbol, f in groupby(expiredInsights, lambda x: x.Symbol):
            if not self.insightCollection.HasActiveInsights(
                    symbol, algorithm.UtcTime) and not symbol in errorSymbols:
                expiredTargets.append(PortfolioTarget(symbol, 0))
                continue

        targets.extend(expiredTargets)

        self.nextExpiryTime = self.insightCollection.GetNextExpiryTime()
        if self.nextExpiryTime is None:
            self.nextExpiryTime = UTCMIN

        self.rebalancingTime = algorithm.UtcTime + self.rebalancingPeriod

        return targets

    def OnSecuritiesChanged(self, algorithm, changes):
        '''Event fired each time the we add/remove securities from the data feed
        Args:
            algorithm: The algorithm instance that experienced the change in securities
            changes: The security additions and removals from the algorithm'''

        # Get removed symbol and invalidate them in the insight collection
        self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities]
        self.insightCollection.Clear(self.removedSymbols)