Exemplo n.º 1
0
    def updateRefRADec(self, skip_rot_update=False):
        """ Update the reference RA and Dec (true in J2000) from Alt/Az (apparent in epoch of date). """

        if not skip_rot_update:
            # Save the current rotation w.r.t horizon value
            self.rotation_from_horiz = rotationWrtHorizon(self)

        # Convert the reference apparent Alt/Az in the epoch of date to true RA/Dec in J2000
        ra, dec = apparentAltAz2TrueRADec(
            self.az_centre, self.alt_centre, self.JD, self.lat, self.lon, self.refraction)

        # Assign the computed RA/Dec to platepar
        self.RA_d = ra
        self.dec_d = dec

        if not skip_rot_update:
            # Update the position angle so that the rotation wrt horizon doesn't change
            self.pos_angle_ref = rotationWrtHorizonToPosAngle(self, self.rotation_from_horiz)
Exemplo n.º 2
0
def updateAzAltGrid(grid, platepar):
    """
    Updates the values of grid to form an azimuth and altitude grid

    Arguments:
        grid: [pg.PlotCurveItem]
        platepar: [Platepar object]

    """

    # Compute FOV size
    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Determine gridline frequency (double the gridlines if the number is < 4eN)
    grid_freq = 10**np.floor(np.log10(fov_radius))
    if 10**(np.log10(fov_radius) - np.floor(np.log10(fov_radius))) < 4:
        grid_freq /= 2

    # Set a maximum grid frequency of 15 deg
    if grid_freq > 15:
        grid_freq = 15

    # Grid plot density
    plot_dens = grid_freq / 100

    az_grid_arr = np.arange(0, 90, grid_freq)
    alt_grid_arr = np.arange(0, 360, grid_freq)

    x = []
    y = []
    cuts = []

    # circles
    for az_grid in az_grid_arr:
        alt_grid_plot = np.arange(0, 360,
                                  plot_dens)  # how many degrees of circle
        az_grid_plot = np.zeros_like(alt_grid_plot) + az_grid

        # filter_arr = (angularSeparation(alt_centre,
        #                                 azim_centre,
        #                                 alt_grid_plot,
        #                                 az_grid_plot) < fov_radius)
        #
        # alt_grid_plot = alt_grid_plot[filter_arr]
        # az_grid_plot = az_grid_plot[filter_arr]

        ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(
            alt_grid_plot, az_grid_plot, platepar.JD, platepar.lat,
            platepar.lon, platepar.refraction)
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # Outward lines
    for alt_grid in alt_grid_arr:
        az_grid_plot = np.arange(0, 90, plot_dens)
        alt_grid_plot = np.zeros_like(az_grid_plot) + alt_grid

        # filter_arr = (angularSeparation(alt_centre,
        #                                 azim_centre,
        #                                 alt_grid_plot,
        #                                 az_grid_plot) < fov_radius)
        #
        # alt_grid_plot = alt_grid_plot[filter_arr]
        # az_grid_plot = az_grid_plot[filter_arr]

        ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(
            alt_grid_plot, az_grid_plot, platepar.JD, platepar.lat,
            platepar.lon, platepar.refraction)
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    r = 50
    for i in range(len(x) - 1):
        if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2:
            cuts.append(i)

    connect = np.full(len(x), 1)
    for i in cuts[:-1]:
        connect[i] = 0

    grid.setData(x=x, y=y, connect=connect)
Exemplo n.º 3
0
def updateAzAltGrid(grid, platepar):
    """
    Updates the values of grid to form an azimuth and altitude grid on a pyqtgraph plot.

    Arguments:
        grid: [pg.PlotCurveItem]
        platepar: [Platepar object]

    """

    ### COMPUTE FOV CENTRE ###

    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(platepar.JD)], [platepar.X_res/2], [platepar.Y_res/2], [1], \
                                    platepar, extinction_correction=False)

    # Compute alt/az of FOV centre
    azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c[0], dec_c[0], platepar.JD, platepar.lat, \
        platepar.lon)

    ### ###

    # Compute FOV size
    fov_radius = getFOVSelectionRadius(platepar)

    # Determine gridline frequency (double the gridlines if the number is < 4eN)
    grid_freq = 10**np.floor(np.log10(2 * fov_radius))
    if 10**(np.log10(2 * fov_radius) - np.floor(np.log10(2 * fov_radius))) < 4:
        grid_freq /= 2

    # Set a maximum grid frequency of 15 deg
    if grid_freq > 15:
        grid_freq = 15

    # Grid plot density
    plot_dens = grid_freq / 100

    # Generate a grid of all azimuths and altitudes
    alt_grid_arr = np.arange(0, 90, grid_freq)
    az_grid_arr = np.arange(0, 360, grid_freq)

    x = []
    y = []
    cuts = []

    # Altitude lines
    for alt_grid in alt_grid_arr:

        # Keep the altitude fixed and plot all azimuth lines
        az_grid_plot = np.arange(0, 360, plot_dens)
        alt_grid_plot = np.zeros_like(az_grid_plot) + alt_grid

        # Filter out all lines outside the FOV
        filter_arr = np.degrees(angularSeparation(np.radians(azim_centre), np.radians(alt_centre), \
            np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius

        az_grid_plot = az_grid_plot[filter_arr]
        alt_grid_plot = alt_grid_plot[filter_arr]

        # Compute image coordinates
        ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(az_grid_plot, alt_grid_plot, platepar.JD, \
            platepar.lat, platepar.lon, platepar.refraction)
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        # Filter out all points outside the image
        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # Azimuth lines
    for az_grid in az_grid_arr:

        # Keep the azimuth fixed and plot all altitude lines
        alt_grid_plot = np.arange(0, 90 + plot_dens, plot_dens)
        az_grid_plot = np.zeros_like(alt_grid_plot) + az_grid

        # Filter out all lines outside the FOV
        filter_arr = np.degrees(angularSeparation(np.radians(azim_centre), np.radians(alt_centre), \
            np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius

        az_grid_plot = az_grid_plot[filter_arr]
        alt_grid_plot = alt_grid_plot[filter_arr]

        # Compute image coordinates
        ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(az_grid_plot, alt_grid_plot, platepar.JD, \
            platepar.lat, platepar.lon, platepar.refraction)
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        # Filter out all points outside the image
        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    r = 15  # adjust this parameter if you see extraneous lines
    # disconnect lines that are distant (unfinished circles had straight lines completing them)
    for i in range(len(x) - 1):
        if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2:
            cuts.append(i)

    connect = np.full(len(x), 1)
    for i in cuts[:-1]:
        connect[i] = 0

    grid.setData(x=x, y=y, connect=connect)
Exemplo n.º 4
0
def updateRaDecGrid(grid, platepar):
    """
    Updates the values of grid to form a right ascension and declination grid

    Arguments:
        grid: [pg.PlotCurveItem]
        platepar: [Platepar object]

    """
    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(platepar.JD)],
                                    [platepar.X_res / 2], [platepar.Y_res / 2],
                                    [1],
                                    platepar,
                                    extinction_correction=False)

    # azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c, dec_c, platepar.JD, platepar.lat, platepar.lon)

    # Compute FOV size
    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Determine gridline frequency (double the gridlines if the number is < 4eN)
    grid_freq = 10**np.floor(np.log10(fov_radius))
    if 10**(np.log10(fov_radius) - np.floor(np.log10(fov_radius))) < 4:
        grid_freq /= 2

    # Set a maximum grid frequency of 15 deg
    if grid_freq > 15:
        grid_freq = 15

    # Grid plot density
    plot_dens = grid_freq / 100

    ra_grid_arr = np.arange(0, 360, grid_freq)
    dec_grid_arr = np.arange(-90, 90, grid_freq)

    x = []
    y = []
    cuts = []

    # Plot the celestial parallel grid (circles)
    for dec_grid in dec_grid_arr:
        ra_grid_plot = np.arange(0, 360, plot_dens)
        dec_grid_plot = np.zeros_like(ra_grid_plot) + dec_grid

        # Compute alt/az
        az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(
            ra_grid_plot, dec_grid_plot, platepar.JD, platepar.lat,
            platepar.lon, platepar.refraction)

        # Filter out points below the horizon  and outside the FOV
        filter_arr = (alt_grid_plot > 0)  # & (angularSeparation(alt_centre,
        # azim_centre,
        # alt_grid_plot,
        # az_grid_plot) < fov_radius)
        ra_grid_plot = ra_grid_plot[filter_arr]
        dec_grid_plot = dec_grid_plot[filter_arr]

        # Compute image coordinates for every grid celestial parallel
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # Plot the celestial meridian grid (outward lines)
    for ra_grid in ra_grid_arr:
        dec_grid_plot = np.arange(-90, 90, plot_dens)  # how close to horizon
        ra_grid_plot = np.zeros_like(dec_grid_plot) + ra_grid

        # Compute alt/az
        az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(
            ra_grid_plot, dec_grid_plot, platepar.JD, platepar.lat,
            platepar.lon, platepar.refraction)

        # Filter out points below the horizon
        filter_arr = (alt_grid_plot > 0)  #& (angularSeparation(alt_centre,
        # azim_centre,
        # alt_grid_plot,
        # az_grid_plot) < fov_radius)
        ra_grid_plot = ra_grid_plot[filter_arr]
        dec_grid_plot = dec_grid_plot[filter_arr]

        # Compute image coordinates for every grid celestial parallel
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # horizon
    az_horiz_arr = np.arange(0, 360, plot_dens)
    alt_horiz_arr = np.zeros_like(az_horiz_arr)
    ra_horiz_plot, dec_horiz_plot = apparentAltAz2TrueRADec(
        az_horiz_arr, alt_horiz_arr, platepar.JD, platepar.lat, platepar.lon,
        platepar.refraction)

    x_horiz, y_horiz = raDecToXYPP(ra_horiz_plot, dec_horiz_plot, platepar.JD,
                                   platepar)

    filter_arr = (x_horiz >= 0) & (x_horiz <= platepar.X_res) & (
        y_horiz >= 0) & (y_horiz <= platepar.Y_res)
    x_horiz = x_horiz[filter_arr]
    y_horiz = y_horiz[filter_arr]

    x.extend(x_horiz)
    y.extend(y_horiz)
    cuts.append(len(x) - 1)

    r = 15  # adjust this parameter if you see extraneous lines
    # disconnect lines that are distant (unfinished circles had straight lines completing them)
    for i in range(len(x) - 1):
        if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2:
            cuts.append(i)

    # convert cuts into connect
    connect = np.full(len(x), 1)
    if len(connect) > 0:
        for i in cuts:
            connect[i] = 0

    grid.setData(x=x, y=y, connect=connect)
Exemplo n.º 5
0
def updateRaDecGrid(grid, platepar):
    """
    Updates the values of grid to form a right ascension and declination grid on a pyqtgraph plot.

    Arguments:
        grid: [pg.PlotCurveItem]
        platepar: [Platepar object]

    """

    ### COMPUTE FOV CENTRE ###

    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(platepar.JD)], [platepar.X_res/2], [platepar.Y_res/2], [1], \
                                    platepar, extinction_correction=False)

    # Compute alt/az of FOV centre
    azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c[0], dec_c[0], platepar.JD, platepar.lat, \
        platepar.lon)

    ### ###

    # Compute FOV size
    fov_radius = getFOVSelectionRadius(platepar)

    # Determine gridline frequency (double the gridlines if the number is < 4eN)
    grid_freq = 10**np.floor(np.log10(2 * fov_radius))
    if 10**(np.log10(2 * fov_radius) - np.floor(np.log10(2 * fov_radius))) < 4:
        grid_freq /= 2

    # Set a maximum grid frequency of 15 deg
    if grid_freq > 15:
        grid_freq = 15

    # Grid plot density
    plot_dens = grid_freq / 100

    # Make an array of RA and Dec
    ra_grid_arr = np.arange(0, 360, grid_freq)
    dec_grid_arr = np.arange(-90, 90, grid_freq)

    x = []
    y = []
    cuts = []

    # Generate points for the celestial parallels grid
    for dec_grid in dec_grid_arr:

        # Keep the declination fixed and evaluate all right ascensions
        ra_grid_plot = np.arange(0, 360, plot_dens)
        dec_grid_plot = np.zeros_like(ra_grid_plot) + dec_grid

        # Compute alt/az
        az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, platepar.JD, \
            platepar.lat, platepar.lon, platepar.refraction)

        # Filter out points below the horizon and outside the FOV
        filter_arr = (alt_grid_plot >= 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \
            np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius)

        ra_grid_plot = ra_grid_plot[filter_arr]
        dec_grid_plot = dec_grid_plot[filter_arr]

        # Compute image coordinates for every grid celestial parallel
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        # Filter out all points outside the image
        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        # Add points to the list
        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # Generate points for the celestial meridian grid
    for ra_grid in ra_grid_arr:

        # Keep the RA fixed and evaluate all declinations
        dec_grid_plot = np.arange(-90, 90 + plot_dens, plot_dens)
        ra_grid_plot = np.zeros_like(dec_grid_plot) + ra_grid

        # Compute alt/az
        az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, platepar.JD, \
            platepar.lat, platepar.lon, platepar.refraction)

        # Filter out points below the horizon
        filter_arr = (alt_grid_plot >= 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \
            np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius)
        ra_grid_plot = ra_grid_plot[filter_arr]
        dec_grid_plot = dec_grid_plot[filter_arr]

        # Compute image coordinates for every grid celestial parallel
        x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD,
                                     platepar)

        # Filter out points outside the image
        filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (
            y_grid >= 0) & (y_grid <= platepar.Y_res)
        x_grid = x_grid[filter_arr]
        y_grid = y_grid[filter_arr]

        x.extend(x_grid)
        y.extend(y_grid)
        cuts.append(len(x) - 1)

    # Generate points for the horizon
    az_horiz_arr = np.arange(0, 360, plot_dens)
    alt_horiz_arr = np.zeros_like(az_horiz_arr)
    ra_horiz_plot, dec_horiz_plot = apparentAltAz2TrueRADec(az_horiz_arr, alt_horiz_arr, platepar.JD, \
        platepar.lat, platepar.lon, platepar.refraction)

    # Filter out all horizon points outside the FOV
    filter_arr = np.degrees(angularSeparation(np.radians(alt_centre), np.radians(azim_centre), \
        np.radians(alt_horiz_arr), np.radians(az_horiz_arr))) <= fov_radius

    ra_horiz_plot = ra_horiz_plot[filter_arr]
    dec_horiz_plot = dec_horiz_plot[filter_arr]

    # Compute image coordinates of the horizon
    x_horiz, y_horiz = raDecToXYPP(ra_horiz_plot, dec_horiz_plot, platepar.JD,
                                   platepar)

    # Filter out all horizon points outside the image
    filter_arr = (x_horiz >= 0) & (x_horiz <= platepar.X_res) & (
        y_horiz >= 0) & (y_horiz <= platepar.Y_res)
    x_horiz = x_horiz[filter_arr]
    y_horiz = y_horiz[filter_arr]

    x.extend(x_horiz)
    y.extend(y_horiz)
    cuts.append(len(x) - 1)

    r = 15  # adjust this parameter if you see extraneous lines
    # disconnect lines that are distant (unfinished circles had straight lines completing them)
    for i in range(len(x) - 1):
        if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2:
            cuts.append(i)

    # convert cuts into connect
    connect = np.full(len(x), 1)
    if len(connect) > 0:
        for i in cuts:
            connect[i] = 0

    grid.setData(x=x, y=y, connect=connect)