def __init__(self,
                 file_out,
                 inputfilename="",
                 params_gain=PARAMS_GAIN(),
                 params_det=PARAMS_DET(),
                 params_discharge=PARAMS_PD(),
                 debug=False):
        self.ADCPKPOS_SECTOR_AVG = 0.  #Average of the fitted cluster ADC PkPos in defined (ieta,iphi) sector
        self.ADCPKPOS_SECTOR_STDDEV = 0.  #Std. Dev. of the fitted cluster ADC PkPos in defined (ieta,iphi) sector

        self.ANA_UNI_GRANULARITY = 32

        self.AVGCLUSTSIZE_SECTOR_AVG = 0.  #Average of Average Cluster Size distributions in defined (ieta,iphi) sector
        self.AVGCLUSTSIZE_SECTOR_STDDEV = 0.  #Std. Dev. of Average Cluster Size distributions in defined (ieta,iphi) sector

        self.DEBUG = debug

        self.DETECTOR = params_det

        self.DET_IMON_QC5_RESP_UNI = params_det.DET_IMON_QC5_RESP_UNI
        self.DET_IMON_POINTS = []

        self.FILE_IN = []
        if len(inputfilename) > 0:
            self.FILE_IN = TFile(str(inputfilename), "READ", "", 1)

        self.FILE_OUT = file_out

        self.GAIN_CALCULATOR = params_gain
        self.GAIN_LAMBDA = 1.
        self.GAIN_LAMBDA_ERR = 0.

        self.GAIN_AVG_POINTS = []  #Average Gain over the entire detector
        self.GAIN_STDDEV_POINTS = [
        ]  #Std. Dev of Gain over the entire detector
        self.GAIN_MAX_POINTS = []  #Max Gain over the entire detector
        self.GAIN_MIN_POINTS = []  #Min Gain over the entire detector

        self.G2D_MAP_ABS_RESP_UNI = TGraph2D(
        )  #Absolute Response Uniformity Map
        self.G2D_MAP_AVG_CLUST_SIZE_ORIG = TGraph2D(
        )  #Absolute Avg Cluster Size Map
        self.G2D_MAP_AVG_CLUST_SIZE_NORM = TGraph2D(
        )  #Normalized "                   "
        self.G2D_MAP_GAIN_ORIG = TGraph2D()  #Effective Gain Map

        self.PD_CALCULATOR = params_discharge

        self.PD_AVG_POINTS = []  #Avg P_D over entire detector
        self.PD_STDDEV_POINTS = []  #Std. Dev of P_D over entire detector
        self.PD_MAX_POINTS = []  #Max P_D over the entire detector
        self.PD_MIN_POINTS = []  #Min P_D over the entire detector

        return
Exemplo n.º 2
0
def makePlot(s):
    if (type(s) == TH1D):
        s.SetStats(0)
        x = RooRealVar("x", "x", 0, 3)
        l = RooArgList(x)
        dh = RooDataHist("dh", "dh", l, s)
        frame = x.frame()

        dh.plotOn(frame)
        #frame.SetTitle(name)
        #frame.GetXaxis().SetTitle(s.GetXaxis().GetTitle())
        frame.GetYaxis().SetTitle(s.GetYaxis().GetTitle())

        #        frame.GetYaxis().SetTopMargin(0.15)
        #frame.Draw(draw)
        return frame

    elif (type(s) == TH2D):
        s.SetStats(0)
        x = RooRealVar("x", "x", 0, 3)
        y = RooRealVar("y", "y", 0, 3)
        l = RooArgList(x, y)
        dh = RooDataHist("dh", "dh", l, s)
        t = TGraph2D(s)
        s.SetMarkerSize(1.0)
        s.SetMarkerStyle(1)
        #t.GetXaxis().SetTitle(s.GetXaxis().GetTitle())
        return s

    elif (type(s) == TGraph2D):
        s.SetMarkerSize(1.0)
        s.SetMarkerStyle(1)
        return s
Exemplo n.º 3
0
    def plot(self, gD01, gDbar01, repeat=False):
        N = gD01.GetN()

        xD01 = gD01.GetX()
        yD01 = gD01.GetY()
        zD01 = gD01.GetZ()
        xDbar01 = gDbar01.GetX()
        yDbar01 = gDbar01.GetY()
        zDbar01 = gDbar01.GetZ()
        gr1 = TGraph2D(N)
        gr1.SetName("delta" + self.obj)

        for i in range(N):
            x1 = xD01[i]
            y1 = yD01[i]
            if self.obj=="gAbs":
                z1 =  gDbar01.Interpolate(y1,x1) / zD01[i] * 100
            else:
                z1 = gDbar01.Interpolate(y1, x1) - zD01[i] * 100
                if (z1 < 0):
                    z1 += 2 * pi 
            #z1 *= 1/(2*pi)
            #z1 = zDbar01[i] - gD01.Interpolate(y1,x1)
            gr1.SetPoint(i, x1, y1, z1)

        xD1 = gr1.GetX()
        yD1 = gr1.GetY()
        zD1 = gr1.GetZ()


        #set_palette()

        theta = 89.9
        phi=0.1
        c1 = TCanvas("c1", "c1", 4000, 4000)
        gPad.SetLeftMargin(0.1)
        c1.cd()

        
        titles = {
            "gArg":"#delta_{D}",
            "gAbs": "|A_{#bar{D}^{0}}|/|A_{D^{0}}|"
        }
        title = titles[self.obj]
        if (repeat):
            title = "#Delta" + title
        gr1.SetTitle("%s ; m^{2}_{K_{S}^{0} #pi^{+}} ; m^{2}_{K_{S}^{0} #pi^{-}}" % (title))
        gr1.GetXaxis().SetLabelOffset(15)
        gr1.GetYaxis().SetLabelOffset(15)
        gr1.GetZaxis().SetLabelOffset(15)
        gr1.SetMargin(0.02)
        gr1.Draw(self.draw2D)
        gPad.SetTheta(theta)
        gPad.SetPhi(phi)
        gPad.SetLeftMargin(0.15)
        gStyle.SetPalette(55)
        gPad.Update()
        c1.SaveAs("%s/Delta_%s.%s" % (self.output, self.obj, self.imgtype))
        return gr1
def seed3dfitSVD(name,r1,r2,r3,r4,dodraw):
   g = TGraph2D()
   g.SetMarkerSize(3)
   g.SetMarkerStyle(20)
   g.SetMarkerColor(ROOT.kRed)
   g.SetLineColor(ROOT.kRed)
   g.SetPoint(0,r1[2],r1[1],r1[0])
   g.SetPoint(1,r2[2],r2[1],r2[0])
   g.SetPoint(2,r3[2],r3[1],r3[0])
   g.SetPoint(3,r4[2],r4[1],r4[0])
   g.GetXaxis().SetRangeUser(290,340)
   g.GetYaxis().SetRangeUser(-0.8,+0.8)
   g.GetZaxis().SetRangeUser( 0 if(isel(r1[0])) else xPsideL, xEsideR if(isel(r1[0])) else 0 )
   
   x = np.array([r1[0],r2[0],r3[0],r4[0]])
   y = np.array([r1[1],r2[1],r3[1],r4[1]])
   z = np.array([r1[2],r2[2],r3[2],r4[2]])

   data = np.concatenate((x[:, np.newaxis], 
                          y[:, np.newaxis], 
                          z[:, np.newaxis]), 
                         axis=1)

   # Calculate the mean of the points, i.e. the 'center' of the cloud
   datamean = data.mean(axis=0)

   # Do an SVD on the mean-centered data (Singular Value Decomposition)
   uu, dd, vv = np.linalg.svd(data - datamean) 

   # Now vv[0] contains the first principal component, i.e. the direction
   # vector of the 'best fit' line in the least squares sense.

   # Now generate some points along this best fit line, for plotting.

   # I use -7, 7 since the spread of the data is roughly 14
   # and we want it to have mean 0 (like the points we did
   # the svd on). Also, it's a straight line, so we only need 2 points.
   # linepts = vv[0] * np.mgrid[-7:7:2j][:, np.newaxis]
   linepts = vv[0] * np.mgrid[-50:50:2j][:, np.newaxis]

   # shift by the mean to get the line in the right place
   linepts += datamean
   
   if(dodraw):
      lfit = TPolyLine3D()
      for point in linepts:
         lfit.SetNextPoint(point[2],point[1],point[0])
      lfit.SetLineColor(ROOT.kBlue)
      cnv = TCanvas("","",2000,2000)
      view = TView.CreateView(1)
      xviewmin = 0 if(isel(r1[0])) else xPsideL
      xviewmax = xEsideR if(isel(r1[0])) else 0
      view.SetRange(290,-0.8, xviewmin , 340,+0.8,xviewmax)
      view.ShowAxis()
      g.Draw("p0")
      lfit.Draw("smae")
      cnv.SaveAs(name)
   
   return linepts, dd ## dd is a 1D array of the data singular values
def seed3dfit(name,r1,r2,r3,r4,dodraw):
   g = TGraph2D()
   g.SetMarkerSize(3)
   g.SetMarkerStyle(20)
   g.SetMarkerColor(ROOT.kRed)
   g.SetLineColor(ROOT.kRed)
   g.SetPoint(0,r1[2],r1[1],r1[0])
   g.SetPoint(1,r2[2],r2[1],r2[0])
   g.SetPoint(2,r3[2],r3[1],r3[0])
   g.SetPoint(3,r4[2],r4[1],r4[0])
   g.GetXaxis().SetRangeUser(290,340)
   g.GetYaxis().SetRangeUser(-0.8,+0.8)
   g.GetZaxis().SetRangeUser(0 if(isel(r1[0])) else xPsideL, xEsideR if(isel(r1[0])) else 0 )
   
   x = np.array([r1[0],r2[0],r3[0],r4[0]])
   y = np.array([r1[1],r2[1],r3[1],r4[1]])
   z = np.array([r1[2],r2[2],r3[2],r4[2]])
   
   # this will find the slope and x-intercept of a plane
   # parallel to the y-axis that best fits the data
   A_xz = np.vstack((x, np.ones(len(x)))).T
   # m_xz, c_xz = np.linalg.lstsq(A_xz, z,rcond=None)[0]
   result_xz = np.linalg.lstsq(A_xz, z,rcond=None)
   m_xz, c_xz = result_xz[0]
   residuals_xz = result_xz[1]

   # again for a plane parallel to the x-axis
   A_yz = np.vstack((y, np.ones(len(y)))).T
   # m_yz, c_yz = np.linalg.lstsq(A_yz, z,rcond=None)[0]
   result_yz = np.linalg.lstsq(A_yz, z,rcond=None)
   m_yz, c_yz = result_yz[0]
   residuals_yz = result_yz[1]

   if(dodraw):
      zz = np.array([300,310,320,330])
      xx,yy = line3d(zz, m_xz,c_xz,m_yz,c_yz)
      lfit = TPolyLine3D()
      for i in range(4):
         lfit.SetNextPoint(zz[i],yy[i],xx[i])
      lfit.SetLineColor(ROOT.kBlue)
      cnv = TCanvas("","",2000,2000)
      view = TView.CreateView(1)
      xviewmin = 0 if(isel(r1[0])) else xPsideL
      xviewmax = xEsideR if(isel(r1[0])) else 0
      view.SetRange(290,-0.8, xviewmin , 340,+0.8,xviewmax)
      view.ShowAxis()
      g.Draw("p0")
      lfit.Draw("smae")
      cnv.SaveAs(name)
   
   return residuals_xz,residuals_yz
Exemplo n.º 6
0
    def MakeGraph(self, title, suffix):
        self.legend_title = title.replace('.root', '').replace('-', '_')
        self.suffix = suffix
        if title.find('DY') != -1:
            title = 'Drell-Yan events'
        elif title.find('TT') != -1:
            title = r't\bar{t} events'
        else:
            mH_value = re.findall(r'\d+', title)[2]
            mA_value = re.findall(r'\d+', title)[3]
            title = 'Signal events with M_{H} = %s GeV and M_{A} = %s GeV' % (
                mH_value, mA_value)

        # Normalize #
        if self.normalize:
            self.Z += self.nevents * self.norm
            title += ' [Normalized]'
            self.legend_title += '_norm'

        # Divide by total entries #
        self.Z /= self.nevents  # Divide by N
        self.Z *= 2  # Because -2 log L

        # check for invalids (nan of inf) might be coming from log10 #
        invalid_entries = np.logical_or(np.isinf(self.Z), np.isnan(self.Z))
        max_Z = np.amax(self.Z[np.invert(invalid_entries)])
        min_Z = np.amin(self.Z[np.invert(invalid_entries)])
        self.Z[invalid_entries] = 0  # removes non physical points

        # Generate graph #
        graph = TGraph2D(self.N)
        print('Generating TGraph2D')
        manager = enlighten.get_manager()
        pbar = manager.counter(total=self.N, desc='Progress', unit='Point')
        for i in range(self.N):
            graph.SetPoint(i, self.mA[i], self.mH[i], self.Z[i])
            pbar.update()
        manager.stop()

        #graph = copy.deepcopy(TGraph2D(self.N,self.mA,self.mH,self.Z))
        graph.SetTitle(
            'Log-Likelihood : %s;M_{A} [GeV]; M_{H} [GeV]; -2log L' % (title))
        graph.SetMaximum(max_Z)
        graph.SetMinimum(min_Z)
        graph.SetNpx(1000)
        graph.SetNpy(1000)

        # Save graph #
        self.graph = graph
        self._saveGraph()
Exemplo n.º 7
0
def initialR(b, d):

    tR = [
        TH1D("X", ";x pos;", 100, 0, 10),
        TH1D("Y", ";y pos;", 100, 0, 10),
        TH1D("Z", ";z pos;", 100, 0, 10)
    ]

    tg2d = TGraph2D()
    c = 0
    o = 0
    for i in b.R():
        if (c == d):
            for j in i:
                #print j
                x = j[0]
                y = j[1]
                z = j[2]
                tR[0].Fill(x)
                tR[1].Fill(y)
                tR[2].Fill(z)
                tg2d.SetPoint(o, x, y, z)
                o += 1
                #print "(%f,%f,%f)" % (x,y,z)
        c += 1

    tR[0].GetXaxis().SetTitle("X pos @ t = %d" % d)
    tR[1].GetXaxis().SetTitle("Y pos @ t = %d" % d)
    tR[2].GetXaxis().SetTitle("Z pos @ t = %d" % d)

    for y in xrange(3):
        tR[y].GetYaxis().SetTitle("Count")
        tR[y].GetYaxis().CenterTitle()
        tR[y].GetXaxis().CenterTitle()

    tg2d.GetXaxis().SetTitle("X")
    tg2d.GetYaxis().SetTitle("Y")
    tg2d.GetZaxis().SetTitle("Z")

    tg2d.GetXaxis().CenterTitle()
    tg2d.GetYaxis().CenterTitle()
    tg2d.GetZaxis().CenterTitle()

    return [tR, tg2d]
Exemplo n.º 8
0
def _doProfile2d( solver, ipar1=0, type1="u", ipar2=1, type2= "m" ):
    from ConstrainedFit import clsq
    from ROOT import TGraph2D, TMarker, gPad
    from array import array
    global tg2d, hist, te1, te2, te3, tm
    par1= clsq.createClsqPar( ipar1, type1, solver )
    par2= clsq.createClsqPar( ipar2, type2, solver )
    parval1, parerr1, name1= _getUMParErrName( par1 )
    parval2, parerr2, name2= _getUMParErrName( par2 )
    print( "\nChi^2 profile plot " + name1 + " - " + name2 + ":" )
    corr= solver.getCorrMatrix()
    icorr1= ipar1
    icorr2= ipar2
    if type1 == "u" or type2 == "u":
        nmpar= len(solver.getMpars())
        if type1 == "u":
            icorr1= nmpar + ipar1
        if type2 == "u":
            icorr2= nmpar + ipar2
    rho= corr[icorr1,icorr2]
    te1= _makeEllipse( parval1, parval2, parerr1, parerr2, rho )
    te2= _makeEllipse( parval1, parval2, 2.0*parerr1, 2.0*parerr2, rho )
    te3= _makeEllipse( parval1, parval2, 3.0*parerr1, 3.0*parerr2, rho )
    ca= clsq.clsqAnalysis( solver )
    points= ca.profile2d( par1, par2 )
    npoints= len(points)
    tg2d= TGraph2D( npoints )
    for i in range( npoints ):
        point= points[i]
        tg2d.SetPoint( i, point[0], point[1], point[2] )
    hist= tg2d.GetHistogram()
    contourlevels= array( "d", [ 1.0, 4.0, 9.0 ] )
    hist.SetContour( 3, contourlevels )
    hist.GetXaxis().SetTitle( name1 )
    hist.GetYaxis().SetTitle( name2 )
    hist.SetTitle( "Triangle fit "+name2+" vs "+name1 )
    hist.Draw( "cont1" )
    tm= TMarker( parval1, parval2, 20 )
    tm.Draw( "s" )
    te1.Draw( "s" )
    te2.Draw( "s" )
    te3.Draw( "s" )
    gPad.Print( "triangle_errorellipse.png" )
    return
Exemplo n.º 9
0
    def Plot(self):
        self.CheckError()
        if self.dataCorrect == True:
            c1 = TCanvas("c1", "a template of 1d graphics output", 200, 10,
                         1024, 768)
            gr = TGraph2D()
            gr.SetTitle(self.chartName)

            for index, item in enumerate(self.dataX):
                gr.SetPoint(index, item, self.dataY[index], self.dataZ[index])

            gr.GetXaxis().SetTitle(self.axisXName)
            gr.GetYaxis().SetTitle(self.axisYName)
            gr.GetZaxis().SetTitle(self.axisZName)
            gr.Draw("surf1")
            c1.SaveAs("2D.C")
            print "2d finished"
        else:
            print "data Error nothing to do"
Exemplo n.º 10
0
    def plotDataROOT(self,
                     name='plotDataROOT',
                     ztitle='Z',
                     zmin=None,
                     zmax=None):

        self.canvasData = TCanvas("canvasData", "canvasData", 0, 0, 300, 300)
        gStyle.SetOptStat(0)

        minX, maxX, minY, maxY, minZ, maxZ = self.autoRange(zmin, zmax)

        X, Y, Z = self.getXYZpoints()
        n = X.shape[0]

        self.graphData = TGraph2D(name, ztitle, n, X, Y, Z)

        self.graphData.SetMaximum(maxZ)
        self.graphData.SetMinimum(minZ)
        gStyle.SetHistTopMargin(0)
        self.graphData.Draw("zpcol")
        return self.graphData
Exemplo n.º 11
0
 def ZoomHist(graph, bins, xmin, xmax, ymin, ymax):
     x = np.linspace(xmin, xmax, bins)
     y = np.linspace(ymin, ymax, bins)
     X, Y = np.meshgrid(x, y)
     X = X.ravel()
     Y = Y.ravel()
     valid = np.logical_and(np.greater_equal(Y, X),
                            np.greater_equal(Y, 125))
     X = X[valid]
     Y = Y[valid]
     N = X.shape[0]
     new_graph = TGraph2D(N)
     manager = enlighten.get_manager()
     pbar = manager.counter(total=N, desc='Progress', unit='Point')
     for i in range(N):
         content = graph.Interpolate(X[i], Y[i])
         if content != 0 or Y[i] > 125:
             new_graph.SetPoint(i, X[i], Y[i], content)
         pbar.update()
     new_graph.SetTitle(graph.GetTitle())
     return copy.deepcopy(new_graph)
Exemplo n.º 12
0
    def ExtrapolateGraph(graph, points):
        print('Extrapolation')
        new_graph = TGraph2D(N_plane)
        # Extrapolation #
        from scipy.optimize import curve_fit

        def func(x, a, b, c, x0, y0, e1, e2):
            z = (a * (x[0] - x0)**2 + b * (x[1] - y0)**2 + c * (x[0] - x0) *
                 (x[1] - y0)) * np.exp(-x[0] / e1 - x[1] / e2)
            return z.ravel()

        initial_guess = (-4e-6, -5e-7, 9e-6, 500, 800, 400, 700)
        popt, pcov = curve_fit(func, (points[:, 0], points[:, 1]),
                               points[:, 2],
                               p0=initial_guess)
        print(popt)

        manager = enlighten.get_manager()
        pbar = manager.counter(total=N_plane, desc='Progress', unit='Point')
        for i in range(N_plane):
            pbar.update()
            m_A = mA_plane[i]
            m_H = mH_plane[i]
            if m_A >= m_H:  #or m_H<=mh :#or m_H-m_A<mZ:
                new_graph.SetPoint(i, m_A, m_H, 0)
                continue
            Z = func((m_A, m_H), *popt)
            # Truncation #
            if m_H > 1000:
                Z = func((m_A, 1000), *popt)
            if Z <= 0.02:
                Z = 0.02
            if Z <= 0.07 and m_H > 400:
                Z = 0.07

            new_graph.SetPoint(i, m_A, m_H, Z)
        manager.stop()
        return new_graph
Exemplo n.º 13
0
def test_fill_graph():
    n_samples = 1000
    data2D = RNG.randn(n_samples, 2)
    data3D = RNG.randn(n_samples, 3)

    graph = TGraph()
    rnp.fill_graph(graph, data2D)

    graph2d = TGraph2D()
    rnp.fill_graph(graph2d, data3D)

    # array not 2-d
    for g in (graph, graph2d):
        assert_raises(ValueError, rnp.fill_graph, g, RNG.randn(10))

    # length of second axis does not match dimensionality of histogram
    for g in (graph, graph2d):
        assert_raises(ValueError, rnp.fill_graph, g, RNG.randn(10, 4))

    # wrong type
    h = list()
    a = RNG.randn(10)
    assert_raises(TypeError, rnp.fill_graph, h, a)
Exemplo n.º 14
0
def test_fill_graph():
    np.random.seed(0)
    data2D = np.random.randn(1E6, 2)
    data3D = np.random.randn(1E4, 3)

    graph = TGraph()
    rnp.fill_graph(graph, data2D)

    graph2d = TGraph2D()
    rnp.fill_graph(graph2d, data3D)

    # array not 2-d
    for g in (graph, graph2d):
        assert_raises(ValueError, rnp.fill_graph, g, np.random.randn(1E4))

    # length of second axis does not match dimensionality of histogram
    for g in (graph, graph2d):
        assert_raises(ValueError, rnp.fill_graph, g, np.random.randn(1E4, 4))

    # wrong type
    h = list()
    a = np.random.randn(100)
    assert_raises(TypeError, rnp.fill_graph, h, a)
Exemplo n.º 15
0
def remove_values_from_list(the_list, val):
	while val in the_list:
			the_list.remove(val)
			
for i in range(len(sys.argv)):
	if string.count(sys.argv[i],'defoDump') > 0:
		print 'Opening file number ' + str(i) + ' ' + sys.argv[i]
		file = open(sys.argv[i])
		
		canvas1.cd()
		canvas1.Clear()
		
		nPointsX = 0
		
		grX = TGraph2D()
		
		for line in file:
			
			values = []
			tokenizedLine = line.split(' ',99)
			
			remove_values_from_list(tokenizedLine, ' ')
			remove_values_from_list(tokenizedLine, '')
			
			for token in tokenizedLine:
				values.append(token)
			
			nPointsX += 1
			grX.SetPoint(nPointsX, float(values[2]), float(values[3]), float(values[6]) )
			
Exemplo n.º 16
0
def seed2dfit(name,r1,r2,r3,r4,dodraw):
   gxyz = TGraph2D()
   gxyz.SetMarkerSize(1)
   gxyz.SetMarkerStyle(24)
   gxyz.SetMarkerColor(ROOT.kBlack)
   gxyz.SetPoint(0,r1[2],r1[1],r1[0])
   gxyz.SetPoint(1,r2[2],r2[1],r2[0])
   gxyz.SetPoint(2,r3[2],r3[1],r3[0])
   gxyz.SetPoint(3,r4[2],r4[1],r4[0])
   gxyz.GetXaxis().SetRangeUser(290,340)
   gxyz.GetYaxis().SetRangeUser(-0.8,+0.8)
   gxyz.GetZaxis().SetRangeUser( 0 if(isel(r1[0])) else xPsideL, xEsideR if(isel(r1[0])) else 0 )
      
   gxz = TGraph()
   gxz.SetMarkerSize(1)
   gxz.SetMarkerStyle(24)
   gxz.SetMarkerColor(ROOT.kBlack)
   gxz.SetPoint(0,r1[2],r1[0])
   gxz.SetPoint(1,r2[2],r2[0])
   gxz.SetPoint(2,r3[2],r3[0])
   gxz.SetPoint(3,r4[2],r4[0])
   gxz.GetXaxis().SetRangeUser(290,340)
   if(isel(r1[0])): gxz.GetYaxis().SetRangeUser(0,xEsideR)
   else:            gxz.GetYaxis().SetRangeUser(xPsideL,0)
   
   gyz = TGraph()
   gyz.SetMarkerSize(1)
   gyz.SetMarkerStyle(24)
   gyz.SetMarkerColor(ROOT.kBlack)
   gyz.SetLineColor(ROOT.kRed)
   gyz.SetPoint(0,r1[2],r1[1])
   gyz.SetPoint(1,r2[2],r2[1])
   gyz.SetPoint(2,r3[2],r3[1])
   gyz.SetPoint(3,r4[2],r4[1])
   gyz.GetXaxis().SetRangeUser(290,340)
   gyz.GetYaxis().SetRangeUser(-0.8,+0.8)
   
   fxz = TF1("fxz","pol1",300,330)
   fitr_xz = gxz.Fit(fxz,"Q")
   fitf_xz = gxz.FindObject("fxz")
   
   fyz = TF1("fyz","pol1",300,330)
   fitr_yz = gyz.Fit(fyz,"Q")
   fitf_yz = gyz.FindObject("fyz")
   
   if(dodraw):
      lfit = TPolyLine3D()
      for z in [300,310,320,330]:
         x = fitf_xz.Eval(z)
         y = fitf_yz.Eval(z)
         lfit.SetNextPoint(z,y,x)
      lfit.SetLineColor(ROOT.kBlue)
      cnv = TCanvas("","",1500,500)
      cnv.Divide(3,1)
      cnv.cd(1)
      view = TView.CreateView(1)
      xviewmin = 0 if(isel(r1[0])) else xPsideL
      xviewmax = xEsideR if(isel(r1[0])) else 0
      view.SetRange(290,-0.8, xviewmin , 340,+0.8,xviewmax)
      view.ShowAxis()
      gxyz.Draw("p0")
      lfit.Draw("smae")
      cnv.cd(2)
      gxz.Draw()
      cnv.cd(3)
      gyz.Draw()
      cnv.SaveAs(name)
   
   chi2_xz = fitf_xz.GetChisquare()/fitf_xz.GetNDF()
   chi2_yz = fitf_yz.GetChisquare()/fitf_yz.GetNDF()
   prob_xz = fitf_xz.GetProb()
   prob_yz = fitf_yz.GetProb()
   return  chi2_xz,prob_xz,chi2_yz,prob_yz
Exemplo n.º 17
0
def makePlot2D(filepath,foutname,medcfg,chicfg,offshell=True):
  xsecs = fcncXsecs # FIXME
  limits = parseLimitFiles2D(filepath,None)
  gs = {}
  for g in ['exp','expup','expdown','obs','obsup','obsdown']:
    gs[g] = TGraph2D()

  iP=0
  hgrid = TH2D('grid','grid',medcfg[0],medcfg[1],medcfg[2],chicfg[0],chicfg[1],chicfg[2])
  for p in limits:
    mMed = p[0]; mChi = p[1]
    '''
    if mMed<0.5*medcfg[1] or mMed>1.2*medcfg[2]:
      continue
    if mChi<0.5*chicfg[1] or mChi>1.2*chicfg[2]:
      continue
    '''
    l = limits[p]
    if l.obs==0 or l.cent==0:
      print mMed,mChi
      continue
    hgrid.Fill(mMed,mChi)
    gs['exp'].SetPoint(iP,mMed,mChi,l.cent)
    gs['expup'].SetPoint(iP,mMed,mChi,l.up1)
    gs['expdown'].SetPoint(iP,mMed,mChi,l.down1)
    gs['obs'].SetPoint(iP,mMed,mChi,l.obs)
    gs['obsup'].SetPoint(iP,mMed,mChi,l.obs/(1-XSECUNCERT))
    gs['obsdown'].SetPoint(iP,mMed,mChi,l.obs/(1+XSECUNCERT))
    iP += 1

  hs = {}
  for h in ['exp','expup','expdown','obs','obsup','obsdown']:
    hs[h] = TH2D(h,h,medcfg[0],medcfg[1],medcfg[2],chicfg[0],chicfg[1],chicfg[2])
    # hs[h].SetStats(0); hs[h].SetTitle('')
    for iX in xrange(0,medcfg[0]):
      for iY in xrange(0,chicfg[0]):
        x = medcfg[1] + (medcfg[2]-medcfg[1])*iX/medcfg[0]
        y = chicfg[1] + (chicfg[2]-chicfg[1])*iY/chicfg[0]
        if not(offshell) and 2*y>x:
          continue
        val = gs[h].Interpolate(x,y)
        val = max(0.01,min(100,val))
        hs[h].SetBinContent(iX+1,iY+1,val)
        # if h=='obs':
        #   print iX+1,iY+1,x,y,gs[h].Interpolate(x,y)

  '''
  zaxis = hs['obs'].GetZaxis()
  nbins = zaxis.GetNbins()
  print nbins
  zaxis.SetBinLabel(1,'<10^{-2}')
  zaxis.SetBinLabel(nbins,'>10')
  '''

  hs['obsclone'] = hs['obs'].Clone() # clone it so we can draw with different settings
  for h in ['exp','expup','expdown','obsclone','obsup','obsdown']:
    hs[h].SetContour(2)
    hs[h].SetContourLevel(1,1)
    for iX in xrange(1,medcfg[0]+1):
      for iY in xrange(1,chicfg[0]+1):
        if hs[h].GetBinContent(iX,iY)<=0:
          hs[h].SetBinContent(iX,iY,100)

  canvas = ROOT.TCanvas("canvas", "canvas", 1000, 800)
  canvas.SetLogz()

  frame = canvas.DrawFrame(medcfg[1],chicfg[1],medcfg[2],chicfg[2],"")

  frame.GetYaxis().CenterTitle();
  frame.GetYaxis().SetTitle("m_{#chi} [GeV]");
  frame.GetXaxis().SetTitle("m_{V} [GeV]");
  frame.GetXaxis().SetTitleOffset(1.15);
  frame.GetYaxis().SetTitleOffset(1.15);

  root.gStyle.SetLabelSize(0.035,"X");
  root.gStyle.SetLabelSize(0.035,"Y");
  root.gStyle.SetLabelSize(0.035,"Z");

  frame.Draw()

  ##Color palette
  ncontours = 999;
  #root.TColor.InitializeColors();
  #stops = [ 0.0000, 0.1250, 0.2500, 0.3750, 0.5000, 0.6250, 0.7500, 0.8750, 1.0000]
  stops = [ 0.0000,       0.10,   0.200,     0.30,    0.4000,    0.50,    0.7500,    0.8750, 1.0000]
  red   = [ 243./255., 243./255., 240./255., 240./255., 241./255., 239./255., 186./255., 151./255., 129./255.]
  green = [   0./255.,  46./255.,  99./255., 149./255., 194./255., 220./255., 183./255., 166./255., 147./255.]
  blue  = [   6./255.,   8./255.,  36./255.,  91./255., 169./255., 235./255., 246./255., 240./255., 233./255.]

  stopsArray = array('d',stops)
  redArray   = array('d',red)
  greenArray = array('d',green)
  blueArray  = array('d',blue)

  root.TColor.CreateGradientColorTable(9, stopsArray, redArray, greenArray, blueArray, ncontours);
  root.gStyle.SetNumberContours(ncontours);

  hs['obs'].SetMinimum(0.01)
  hs['obs'].SetMaximum(100.)

  hs['obs'].Draw("COLZ SAME")

  hs['obsclone'].SetLineStyle(1)
  hs['obsclone'].SetLineWidth(3)
  hs['obsclone'].SetLineColor(2)
  hs['obsclone'].Draw('CONT3 SAME')

  ctemp = root.TCanvas()
  hs['obsclone'].Draw('contlist')
  ctemp.Update()
  objs = root.gROOT.GetListOfSpecials().FindObject('contours')
  saveobs = (objs.At(0)).First()

  canvas.cd()

  hs['obsup'].SetLineStyle(2)
  hs['obsup'].SetLineWidth(2)
  hs['obsup'].SetLineColor(2)
  hs['obsup'].Draw('CONT3 SAME')

  hs['obsdown'].SetLineStyle(2)
  hs['obsdown'].SetLineWidth(2)
  hs['obsdown'].SetLineColor(2)
  hs['obsdown'].Draw('CONT3 SAME')

  hs['exp'].SetLineStyle(1)
  hs['exp'].SetLineWidth(3)
  hs['exp'].SetLineColor(1)
  hs['exp'].Draw('CONT3 SAME')

  hs['expup'].SetLineStyle(2)
  hs['expup'].SetLineWidth(2)
  hs['expup'].SetLineColor(1)
  hs['expup'].Draw('CONT3 SAME')

  hs['expdown'].SetLineStyle(2)
  hs['expdown'].SetLineWidth(2)
  hs['expdown'].SetLineColor(1)
  hs['expdown'].Draw('CONT3 SAME')

  if drawLegend:
    leg = root.TLegend(0.16,0.62,0.55,0.88);#,NULL,"brNDC");
    leg.SetHeader('a_{FC} = b_{FC} = 0.25, g_{DM} = 1')
    leg.AddEntry(hs['exp'],"Median Expected  95% CL","L");
    leg.AddEntry(hs['expup'],"Exp. #pm 1 std. dev. (exp)","L");
    leg.AddEntry(hs['obsclone'],"Observed 95% CL","L");
    leg.AddEntry(hs['obsup'],"Obs. #pm 1 std. dev. (theory)","L");
    leg.SetFillColor(0); leg.SetBorderSize(0)
    leg.Draw("SAME");

#  hgrid.Draw('same')

  tex = root.TLatex();
  tex.SetNDC();
  tex.SetTextFont(42);
  tex.SetLineWidth(2);
  tex.SetTextSize(0.040);
  tex.Draw();
  tex.DrawLatex(0.62,0.94,"12.9 fb^{-1} (13 TeV)");
  tex2 = root.TLatex();
  tex2.SetNDC();
  tex2.SetTextFont(42);
  tex2.SetLineWidth(2);
  tex2.SetTextSize(0.04);
  tex2.SetTextAngle(270);
  tex2.DrawLatex(0.965,0.93,"Observed #sigma_{95% CL}/#sigma_{theory}");

  texCMS = root.TLatex(0.12,0.94,"#bf{CMS}");
  texCMS.SetNDC();
  texCMS.SetTextFont(42);
  texCMS.SetLineWidth(2);
  texCMS.SetTextSize(0.05); texCMS.Draw();

  texPrelim = root.TLatex(0.2,0.94,"#it{Preliminary}");
  texPrelim.SetNDC();
  texPrelim.SetTextFont(42);
  texPrelim.SetLineWidth(2);
  texPrelim.SetTextSize(0.04); texPrelim.Draw();

  root.gPad.SetRightMargin(0.15);
  root.gPad.SetTopMargin(0.07);
  root.gPad.SetBottomMargin(0.15);
  root.gPad.RedrawAxis();
  root.gPad.Modified(); 
  root.gPad.Update();

  canvas.SaveAs(foutname+'.png')
  canvas.SaveAs(foutname+'.pdf')

  fsave = root.TFile(foutname+'.root','RECREATE')
  fsave.WriteTObject(hs['obs'],'hobserved')
  fsave.WriteTObject(gs['obs'],'gobserved')
  fsave.WriteTObject(hs['exp'],'hexp')
  fsave.WriteTObject(gs['exp'],'gexp')
  fsave.WriteTObject(saveobs,'observed')
  fsave.Close()
Exemplo n.º 18
0
        gr68.SetLineStyle(1)
        gr68.SetLineColor(1)
        gr68.SetFillStyle(1001)
        gr68.SetFillColor(82)
        #####
        gr95 = contourPlot(tree95, 0.049, 1.0, bestfit)
        gr95.SetLineWidth(2)
        gr95.SetLineStyle(7)
        gr95.SetLineColor(1)
        gr95.SetFillStyle(1001)
        gr95.SetFillColor(89)
    else :
        #gr68 = TGraph()
        #gr68 = tree68
        #bestfit = BestFit(tfBF)
        graph = TGraph2D(th2)
        xbinsize = 0.05; ybinsize = 0.05

        graph.SetNpx( int((graph.GetXmax() - graph.GetXmin())/xbinsize) )
        graph.SetNpy( int((graph.GetYmax() - graph.GetYmin())/ybinsize) )

        kk = graph.GetHistogram()

canv = TCanvas("canv", "canv", 600, 600)
canv.SetBottomMargin(0.10)
canv.SetLeftMargin(0.08)
canv.SetRightMargin(0.12)
if fromGrid :
    graph.Draw('colz')
    #c.SaveAs('plot.pdf')
    gr68 = graph.GetContourList(2.3/2)
Exemplo n.º 19
0
    def RootifyCrossBR(self):
        for processname in self.processnames:
            outfilename_cross = self.crosssecfolder+'/Crosssections_%s%s.root' % (processname, self.tag)
            cross_module = importlib.import_module('crosssections.ChiPsi.Crosssections_%s' % (processname))
            crosssections = cross_module.crosssection
            if self.submit:
                outfile = TFile(outfilename_cross, 'RECREATE')
            else:
                print yellow('--> Would have created outfile %s' % (outfilename_cross))
            print green('--> Now at sample %s' % (processname))
            for lamb in self.lambdas:
                if not lamb in crosssections: continue
                print green('  --> Now at lambda: %s' % (get_lambdastring(lamb)))

                xsecs_per_mref = crosssections[lamb]
                graph2d = TGraph2D()
                npoints2d=0
                set_points ={}
                all_combinations = get_all_combinations(preferred_configurations=preferred_configurations)
                for mlq in all_combinations:
                    set_points[mlq] = {}
                    for mch in all_combinations[mlq]:
                        set_points[mlq][mch] = False
                for mref in xsecs_per_mref:
                    xsecs = xsecs_per_mref[mref]
                    final_xsecs = []
                    mdeps  = array('d')
                    sigmas  = array('d')
                    tot_los = array('d')
                    tot_his = array('d')
                    mdeps_lo = array('d')
                    mdeps_hi = array('d')

                    for tuple in xsecs:
                        mdep, sigma, q_lo, q_hi, pdf = tuple
                        tot_lo = XsecTotErr(sigma, q_lo, pdf)
                        tot_hi = XsecTotErr(sigma, q_hi, pdf)
                        final_xsecs.append((mdep, sigma, tot_lo, tot_hi))
                        mdeps.append(mdep)
                        sigmas.append(sigma)
                        tot_los.append(tot_lo)
                        tot_his.append(tot_hi)
                        mdeps_lo.append(0.)
                        mdeps_hi.append(0.)
                        if 'LQLQ' in processname or 'LQTChannel' in processname:
                            graph2d.SetPoint(npoints2d, mdep, mref, sigma)
                            set_points[mdep][mref] = True
                        elif 'PsiPsi' in processname:
                            graph2d.SetPoint(npoints2d, mref, mdep, sigma)
                            set_points[mref][mdep] = True
                        else:
                            raise ValueError('processname does not contain \'LQLQ\' or \'PsiPsi\', what kind of process are we looking at here?')
                        npoints2d += 1

                    # make TGraph out of it
                    graph = TGraphAsymmErrors(len(mdeps), mdeps, sigmas, mdeps_lo, mdeps_hi, tot_los, tot_his)
                    xaxistitle = 'M_{LQ} [GeV]' if ('LQLQ' in processname or 'LQTChannel' in processname) else 'M_{#chi_{1}} [GeV]'
                    graph.GetXaxis().SetTitle('M_{LQ} [GeV]')
                    graph.GetYaxis().SetTitle('#sigma [pb]')
                    graphname = processname
                    if 'LQLQ' in processname or 'LQTChannel' in processname:
                        graphname += '_MC1%i' % (mref)
                    elif 'PsiPsi' in processname:
                        graphname += '_MLQ%i' % (mref)
                    else:
                        raise ValueError('processname does not contain \'LQLQ\' or \'PsiPsi\', what kind of process are we looking at here?')

                    graphname += '_L%s' % (get_lambdastring(lamb))
                    graph.SetName(graphname)
                    # print 'graphname: %s' % (graphname)
                    graphtitle = processname
                    if 'LQLQ' in processname or 'LQTChannel' in processname:
                        graphtitle += ', M_{#chi_{1}} = %i GeV' % (mref)
                    elif 'PsiPsi' in processname:
                        graphtitle += ', M_{LQ} = %i GeV' % (mref)
                    graphtitle += ', #lambda = %s' % (get_lambdastring(lamb).replace('p', '.'))
                    # print 'graphtitle: %s' % (graphtitle)
                    graph.SetTitle(graphtitle)
                    if self.submit:
                        outfile.cd()
                        graph.Write()
                    else:
                        print yellow('  --> Would have written graph %s to outfile' % (graphname))

                # fill remaining points in 2d graph with zeros
                for mlq in set_points:
                    for mch in set_points[mlq]:
                        if not set_points[mlq][mch]:
                            graph2d.SetPoint(npoints2d, mlq, mch, 0.)
                            npoints2d += 1
                graph2d.SetName(processname + '_L%s' % (get_lambdastring(lamb)))
                graph2d.GetXaxis().SetTitle('M_{LQ} [GeV]')
                graph2d.GetYaxis().SetTitle('M_{#chi_{1}} = %i [GeV]')
                graph2d.GetZaxis().SetTitle('#sigma [pb]')
                graph2d.SetTitle(processname + ', #lambda = %s' % (get_lambdastring(lamb).replace('p', '.')))
                if self.submit:
                    graph2d.Write()
                else:
                    print yellow('  --> Would have written 2d-graph to outfile')
            if self.submit:
                outfile.Close()

            # also rootify BRs if we are looking at the LQLQ process without decays (just for fun, could also be any other LQLQ process)
            if processname == 'LQLQ':
                outfilename_br = self.crosssecfolder+'/Branchingratios_%s%s.root' % (processname, self.tag)
                if self.submit:
                    outfile = TFile(outfilename_br, 'RECREATE')
                else:
                    print yellow('--> Would have created outfile %s' % (outfilename_br))
                br_module = importlib.import_module('crosssections.ChiPsi.Branchingratios_%s' % (processname))
                allbrs = br_module.branchingratio
                for lamb in allbrs.keys():
                    brs = allbrs[lamb]
                    brs2d = {}
                    npoints2d = {}
                    set_points ={}
                    for mlq in all_combinations:
                        set_points[mlq] = {}
                        for mch in all_combinations[mlq]:
                            set_points[mlq][mch] = {}
                            for decaymode in decaymode_dict.keys():
                                set_points[mlq][mch][decaymode] = False

                    decaymodes_present = []
                    for mlq in sorted(brs):
                        mchs_per_decaymode = {}
                        brs_per_decaymode = {}
                        for mch in sorted(brs[mlq]):
                            for decaymode in brs[mlq][mch]:
                                if not decaymode in decaymodes_present:
                                    decaymodes_present.append(decaymode)
                                if not decaymode in mchs_per_decaymode.keys(): mchs_per_decaymode[decaymode] = array('d')
                                if not decaymode in brs_per_decaymode.keys():  brs_per_decaymode[decaymode] = array('d')
                                # if not decaymode in set_points[mlq][mch].keys():
                                #     # print mlq, mch, decaymode
                                #     set_points[mlq][mch][decaymode] = False
                                if not decaymode in brs2d.keys():
                                    graphname2d = processname + ('_L%s_%i_%i' % (get_lambdastring(lamb), abs(decaymode[0]), abs(decaymode[1])))
                                    # print graphname2d
                                    npoints2d[decaymode] = 0
                                    brs2d[decaymode] = TGraph2D()
                                    brs2d[decaymode].SetName(graphname2d)
                                    brs2d[decaymode].GetXaxis().SetTitle('M_{LQ} [GeV]')
                                    brs2d[decaymode].GetYaxis().SetTitle('M_{#chi_{1}} = %i [GeV]')
                                    brs2d[decaymode].GetZaxis().SetTitle('BR (LQLQ#rightarrow%s)' % (decaymode_dict[decaymode]))
                                    brs2d[decaymode].SetTitle(processname + ', %s' % (decaymode_dict[decaymode]))

                                mchs_per_decaymode[decaymode].append(mch)
                                brs_per_decaymode[decaymode].append(brs[mlq][mch][decaymode][0])
                                brs2d[decaymode].SetPoint(npoints2d[decaymode], mlq, mch, brs[mlq][mch][decaymode][0])
                                set_points[mlq][mch][decaymode] = True
                                npoints2d[decaymode] += 1

                        for decaymode in mchs_per_decaymode.keys():
                            graph = TGraph(len(mchs_per_decaymode[decaymode]), mchs_per_decaymode[decaymode], brs_per_decaymode[decaymode])
                            graphname = processname + ('_MLQ%i_L%s_%i_%i' % (mlq, get_lambdastring(lamb), abs(decaymode[0]), abs(decaymode[1])))
                            graph.SetName(graphname)
                            graph.GetXaxis().SetTitle('M_{#chi_{1}} [GeV]')
                            graph.GetYaxis().SetTitle('BR (LQLQ#rightarrow%s)' % (decaymode_dict[decaymode]))
                            graph.SetTitle(processname + ', %s' % (decaymode_dict[decaymode]))
                            if self.submit:
                                graph.Write()
                            else:
                                print yellow('  --> Would have written graph %s to outfile' % (graphname))

                    # fill remaining points in 2d graph with zeros
                    for mlq in set_points:
                        for mch in set_points[mlq]:
                            for decaymode in set_points[mlq][mch]:
                                if not set_points[mlq][mch][decaymode] and decaymode in decaymodes_present:
                                    # print decaymode
                                    # print brs2d.keys()
                                    # print npoints2d.keys()
                                    # print 'Setting BR for MLQ=%i, MCH=%i, decay=(%i, %i) to 0' % (mlq, mch, decaymode[0], decaymode[1])
                                    brs2d[decaymode].SetPoint(npoints2d[decaymode], mlq, mch, 0)
                                    npoints2d[decaymode] += 1
                    if self.submit:
                        for decaymode in brs2d:
                            brs2d[decaymode].Write()
                    else:
                        print yellow('  --> Would have written 2d-graphs to outfile')
                outfile.Close()
Exemplo n.º 20
0
        ScinPlot = TH2F("Scin_" + str(phi), "Scin_" + str(phi), int(100),
                        float(np.mean(theta_S) - 0.05),
                        float(np.mean(theta_S) + 0.05), int(100),
                        float(np.mean(phi_S) - 0.05),
                        float(np.mean(phi_S) + 0.05))
        CherPlot = TH2F("Cher_" + str(phi), "Cher_" + str(phi), int(100),
                        float(np.mean(theta_S) - 0.05),
                        float(np.mean(theta_S) + 0.05), int(100),
                        float(np.mean(phi_S) - 0.05),
                        float(np.mean(phi_S) + 0.05))

        n = len(theta_S)
        array_theta_S = np.array(theta_S, 'd')
        array_phi_S = np.array(phi_S, 'd')
        array_E_s = np.array(E_s, 'd')
        ScinGraph = TGraph2D(n, array_theta_S, array_phi_S, array_E_s)
        ScinGraph.SetName("ScinGraph_" + str(phi))

        n = len(theta_C)
        array_theta_C = np.array(theta_C, 'd')
        array_phi_C = np.array(phi_C, 'd')
        array_E_c = np.array(E_c, 'd')
        CherGraph = TGraph2D(n, array_theta_C, array_phi_C, array_E_c)
        CherGraph.SetName("CherGraph_" + str(phi))

        MeanTheta = 0.
        MeanPhi = 0.
        sumtheta = 0.
        sumphi = 0.
        MeanThetaC = 0.
        MeanPhiC = 0.
Exemplo n.º 21
0
def makePlot2D(filepath, foutname, medcfg, chicfg, offshell=False):
    limits = parseLimitFiles2D(filepath)
    gs = {}
    for g in ['exp', 'expup', 'expdown', 'obs', 'obsup', 'obsdown']:
        gs[g] = TGraph2D()

    iP = 0
    hgrid = TH2D('grid', 'grid', medcfg[0], medcfg[1], medcfg[2], chicfg[0],
                 chicfg[1], chicfg[2])
    for p in limits:
        mMed = p[0]
        mChi = p[1]
        '''
    if mMed<0.5*medcfg[1] or mMed>1.2*medcfg[2]:
      continue
    if mChi<0.5*chicfg[1] or mChi>1.2*chicfg[2]:
      continue
    '''
        l = limits[p]
        if l.obs == 0 or l.cent == 0:
            print mMed, mChi
            continue
        hgrid.Fill(mMed, mChi)
        gs['exp'].SetPoint(iP, mMed, mChi, l.cent)
        gs['expup'].SetPoint(iP, mMed, mChi, l.up1)
        gs['expdown'].SetPoint(iP, mMed, mChi, l.down1)
        iP += 1

    hs = {}
    for h in ['exp', 'expup', 'expdown']:
        hs[h] = TH2D(h, h, medcfg[0], medcfg[1], medcfg[2], chicfg[0],
                     chicfg[1], chicfg[2])
        # hs[h].SetStats(0); hs[h].SetTitle('')
        for iX in xrange(0, medcfg[0]):
            for iY in xrange(0, chicfg[0]):
                x = medcfg[1] + (medcfg[2] - medcfg[1]) * iX / medcfg[0]
                y = chicfg[1] + (chicfg[2] - chicfg[1]) * iY / chicfg[0]
                if not (offshell) and 2 * y > x:
                    val = 9999
                else:
                    val = gs[h].Interpolate(x, y)
                if val == 0:
                    val = 9999
                val = max(0.01, min(100, val))
                hs[h].SetBinContent(iX + 1, iY + 1, val)
                # if h=='obs':
                #   print iX+1,iY+1,x,y,gs[h].Interpolate(x,y)
    '''
  zaxis = hs['obs'].GetZaxis()
  nbins = zaxis.GetNbins()
  print nbins
  zaxis.SetBinLabel(1,'<10^{-2}')
  zaxis.SetBinLabel(nbins,'>10')
  '''

    hs['expclone'] = hs['exp'].Clone()
    for h in ['expup', 'expdown', 'expclone']:
        hs[h].SetContour(2)
        hs[h].SetContourLevel(1, 1)
        for iX in xrange(1, medcfg[0] + 1):
            for iY in xrange(1, chicfg[0] + 1):
                if hs[h].GetBinContent(iX, iY) <= 0:
                    hs[h].SetBinContent(iX, iY, 100)

    canvas = ROOT.TCanvas("canvas", "canvas", 1000, 800)
    canvas.SetLogz()

    frame = canvas.DrawFrame(medcfg[1], chicfg[1], medcfg[2], chicfg[2], "")

    frame.GetYaxis().CenterTitle()
    frame.GetYaxis().SetTitle("m_{#chi} [GeV]")
    frame.GetXaxis().SetTitle("m_{V} [GeV]")
    frame.GetXaxis().SetTitleOffset(1.15)
    frame.GetYaxis().SetTitleOffset(1.15)

    root.gStyle.SetLabelSize(0.035, "X")
    root.gStyle.SetLabelSize(0.035, "Y")
    root.gStyle.SetLabelSize(0.035, "Z")

    frame.Draw()

    hs['exp'].SetMinimum(0.01)
    hs['exp'].SetMaximum(100.)

    hs['exp'].Draw("COLZ SAME")

    hs['expclone'].SetLineStyle(1)
    hs['expclone'].SetLineWidth(3)
    hs['expclone'].SetLineColor(1)
    hs['expclone'].Draw('CONT3 SAME')

    ctemp = root.TCanvas()
    hs['expclone'].Draw('contlist')
    ctemp.Update()
    objs = root.gROOT.GetListOfSpecials().FindObject('contours')

    canvas.cd()

    hs['expup'].SetLineStyle(2)
    hs['expup'].SetLineWidth(2)
    hs['expup'].SetLineColor(1)
    hs['expup'].Draw('CONT3 SAME')

    hs['expdown'].SetLineStyle(2)
    hs['expdown'].SetLineWidth(2)
    hs['expdown'].SetLineColor(1)
    hs['expdown'].Draw('CONT3 SAME')

    if drawLegend:
        leg = root.TLegend(0.16, 0.62, 0.57, 0.88)
        #,NULL,"brNDC");
        leg.SetHeader('g_{q}^{V} = 0.25, g_{DM}^{V} = 1')
        leg.AddEntry(hs['expclone'], "Median Expected  95% CL", "L")
        leg.AddEntry(hs['expup'], "Exp. #pm 1 std. dev. (exp)", "L")
        leg.SetFillColor(0)
        leg.SetBorderSize(0)
        leg.Draw("SAME")

#  hgrid.Draw('same')

    tex = root.TLatex()
    tex.SetNDC()
    tex.SetTextFont(42)
    tex.SetLineWidth(2)
    tex.SetTextSize(0.040)
    tex.Draw()
    tex.DrawLatex(0.62, 0.94, "36.3 fb^{-1} (13 TeV)")
    tex2 = root.TLatex()
    tex2.SetNDC()
    tex2.SetTextFont(42)
    tex2.SetLineWidth(2)
    tex2.SetTextSize(0.04)
    tex2.SetTextAngle(270)
    tex2.DrawLatex(0.965, 0.93, "Expected #sigma_{95% CL}/#sigma_{theory}")

    texCMS = root.TLatex(0.12, 0.94, "#bf{CMS}")
    texCMS.SetNDC()
    texCMS.SetTextFont(42)
    texCMS.SetLineWidth(2)
    texCMS.SetTextSize(0.05)
    texCMS.Draw()

    texPrelim = root.TLatex(0.2, 0.94, "#it{Preliminary}")
    texPrelim.SetNDC()
    texPrelim.SetTextFont(42)
    texPrelim.SetLineWidth(2)
    texPrelim.SetTextSize(0.04)
    texPrelim.Draw()

    root.gPad.SetRightMargin(0.15)
    root.gPad.SetTopMargin(0.07)
    root.gPad.SetBottomMargin(0.15)
    root.gPad.RedrawAxis()
    root.gPad.Modified()
    root.gPad.Update()

    canvas.SaveAs(foutname + '.png')
    canvas.SaveAs(foutname + '.pdf')

    fsave = root.TFile(foutname + '.root', 'RECREATE')
    fsave.WriteTObject(hs['exp'], 'hexp')
    fsave.WriteTObject(gs['exp'], 'gexp')
    fsave.Close()
Exemplo n.º 22
0
def makePlot2D(filepath, foutname, medcfg, gqcfg, header):
    limits = parseLimitFiles2D(filepath)
    gs = {}
    for g in ['exp', 'expup', 'expdown', 'obs', 'obsup', 'obsdown']:
        gs[g] = TGraph2D()

    iP = 0
    hgrid = TH2D('grid', 'grid', medcfg[0], medcfg[1], medcfg[2], gqcfg[0],
                 gqcfg[1], gqcfg[2])
    for p in limits:
        l = p.limit
        if l.obs == 0 or l.cent == 0:
            print l.mMed, l.gQ
            continue
        hgrid.Fill(l.mMed, l.gQ)
        gs['exp'].SetPoint(iP, l.mMed, l.gQ, l.cent)
        gs['expup'].SetPoint(iP, l.mMed, l.gQ, l.up1)
        gs['expdown'].SetPoint(iP, l.mMed, l.gQ, l.down1)
        gs['obs'].SetPoint(iP, l.mMed, l.gQ, l.obs)
        gs['obsup'].SetPoint(iP, l.mMed, l.gQ, l.obs / (1 - XSECUNCERT))
        gs['obsdown'].SetPoint(iP, l.mMed, l.gQ, l.obs / (1 + XSECUNCERT))
        iP += 1

    hs = {}
    for h in ['exp', 'expup', 'expdown', 'obs', 'obsup', 'obsdown']:
        hs[h] = TH2D(h, h, medcfg[0], medcfg[1], medcfg[2], gqcfg[0], gqcfg[1],
                     gqcfg[2])
        # hs[h].SetStats(0); hs[h].SetTitle('')
        for iX in xrange(0, medcfg[0]):
            for iY in xrange(0, gqcfg[0]):
                x = medcfg[1] + (medcfg[2] - medcfg[1]) * iX / medcfg[0]
                y = gqcfg[1] + (gqcfg[2] - gqcfg[1]) * iY / gqcfg[0]
                val = gs[h].Interpolate(x, y)
                if val == 0:
                    val = 9999
                val = max(0.01, min(100, val))
                hs[h].SetBinContent(iX + 1, iY + 1, val)
                # if h=='obs':
                #   print iX+1,iY+1,x,y,gs[h].Interpolate(x,y)
    '''
  zaxis = hs['obs'].GetZaxis()
  nbins = zaxis.GetNbins()
  print nbins
  zaxis.SetBinLabel(1,'<10^{-2}')
  zaxis.SetBinLabel(nbins,'>10')
  '''

    hs['obsclone'] = hs['obs'].Clone(
    )  # clone it so we can draw with different settings
    for h in ['exp', 'expup', 'expdown', 'obsclone', 'obsup', 'obsdown']:
        hs[h].SetContour(2)
        hs[h].SetContourLevel(1, 1)
        for iX in xrange(1, medcfg[0] + 1):
            for iY in xrange(1, gqcfg[0] + 1):
                if hs[h].GetBinContent(iX, iY) <= 0:
                    hs[h].SetBinContent(iX, iY, 100)

    global iC
    canvas = ROOT.TCanvas("canvas%i" % iC, '', 1000, 800)
    canvas.SetLogz()
    iC += 1

    frame = canvas.DrawFrame(medcfg[1], gqcfg[1], medcfg[2], gqcfg[2], "")

    frame.GetYaxis().CenterTitle()
    frame.GetYaxis().SetTitle(gqcfg[3])
    frame.GetXaxis().SetTitle("m_{V} [TeV]")
    frame.GetXaxis().SetTitleOffset(1.15)
    frame.GetYaxis().SetTitleOffset(1.15)

    frame.Draw()

    hs['obs'].SetMinimum(0.01)
    hs['obs'].SetMaximum(100.)

    hs['obs'].Draw("COLZ SAME")

    hs['obsclone'].SetLineStyle(1)
    hs['obsclone'].SetLineWidth(3)
    hs['obsclone'].SetLineColor(2)
    hs['obsclone'].Draw('CONT3 SAME')

    ctemp = root.TCanvas()
    hs['obsclone'].Draw('contlist')
    ctemp.Update()
    objs = root.gROOT.GetListOfSpecials().FindObject('contours')
    saveobs = (objs.At(0)).First()

    canvas.cd()

    hs['obsup'].SetLineStyle(2)
    hs['obsup'].SetLineWidth(1)
    hs['obsup'].SetLineColor(2)
    hs['obsup'].Draw('CONT3 SAME')

    hs['obsdown'].SetLineStyle(2)
    hs['obsdown'].SetLineWidth(1)
    hs['obsdown'].SetLineColor(2)
    hs['obsdown'].Draw('CONT3 SAME')

    hs['exp'].SetLineStyle(1)
    hs['exp'].SetLineWidth(3)
    hs['exp'].SetLineColor(1)
    hs['exp'].Draw('CONT3 SAME')

    hs['expup'].SetLineStyle(2)
    hs['expup'].SetLineWidth(1)
    hs['expup'].SetLineColor(1)
    hs['expup'].Draw('CONT3 SAME')

    hs['expdown'].SetLineStyle(2)
    hs['expdown'].SetLineWidth(1)
    hs['expdown'].SetLineColor(1)
    hs['expdown'].Draw('CONT3 SAME')

    if drawLegend:
        leg = root.TLegend(0.16, 0.62, 0.57, 0.88)
        #,NULL,"brNDC");
        leg.SetHeader(header)
        leg.AddEntry(hs['exp'], "Median Expected  95% CL", "L")
        leg.AddEntry(hs['expup'], "Exp. #pm 1 std. dev. (exp)", "L")
        leg.AddEntry(hs['obsclone'], "Observed 95% CL", "L")
        leg.AddEntry(hs['obsup'], "Obs. #pm 1 std. dev. (theory)", "L")
        leg.SetFillColor(0)
        leg.SetBorderSize(0)
        leg.Draw("SAME")

#  hgrid.Draw('same')

    tex = root.TLatex()
    tex.SetNDC()
    tex.SetTextFont(42)
    tex.SetLineWidth(2)
    tex.SetTextSize(0.040)
    tex.Draw()
    tex.DrawLatex(0.6, 0.94, "35.8 fb^{-1} (13 TeV)")
    tex2 = root.TLatex()
    tex2.SetNDC()
    tex2.SetTextFont(42)
    tex2.SetLineWidth(2)
    tex2.SetTextSize(0.04)
    tex2.SetTextAngle(270)
    tex2.DrawLatex(0.965, 0.93, "Expected #sigma_{95% CL}/#sigma_{theory}")

    texCMS = root.TLatex(0.12, 0.94, "#bf{CMS}")
    texCMS.SetNDC()
    texCMS.SetTextFont(42)
    texCMS.SetLineWidth(2)
    texCMS.SetTextSize(0.05)
    texCMS.Draw()

    #  texPrelim = root.TLatex(0.2,0.94,"#it{Preliminary}");
    #  texPrelim.SetNDC();
    #  texPrelim.SetTextFont(42);
    #  texPrelim.SetLineWidth(2);
    #  texPrelim.SetTextSize(0.04); texPrelim.Draw();

    root.gPad.SetRightMargin(0.15)
    root.gPad.SetTopMargin(0.07)
    root.gPad.SetBottomMargin(0.15)
    root.gPad.RedrawAxis()
    root.gPad.Modified()
    root.gPad.Update()

    canvas.SaveAs(foutname + '.png')
    canvas.SaveAs(foutname + '.pdf')

    fsave = root.TFile(foutname + '.root', 'RECREATE')
    fsave.WriteTObject(hs['exp'], 'hexp')
    fsave.WriteTObject(gs['exp'], 'gexp')
    fsave.Close()
Exemplo n.º 23
0
    0.97514, 0.97068, 0.94650, 0.90751, 0.95916, 0.93991, 0.96377, 0.98120,
    0.99205, 0.97595, 0.92522, 0.97245, 0.99472, 0.99782, 0.99816
])
AUC_DNN = np.array([
    0.90729, 0.90475, 0.90596, 0.87725, 0.93349, 0.90674, 0.85802, 0.97674,
    0.97644, 0.97210, 0.94923, 0.90743, 0.96152, 0.93995, 0.96559, 0.98142,
    0.99210, 0.97635, 0.92650, 0.97343, 0.99470, 0.99726, 0.99729
])
#mH = np.array([200,200,250,250,300,300,300,500,500,500,500,500,650,800,800,800,800,800,1000,1000,1000])
#mA = np.array([50,100,50,100,50,100,200,50,100,200,300,400,50,50,100,200,400,700,50,200,500])
#AUC_MEM = np.array([0.90107,0.89736,0.90640,0.87296,0.92959,0.90424,0.85102,0.97537,0.97514,0.97068,0.94650,0.90751,0.95916,0.93991,0.96377,0.98120,0.99205,0.97595,0.92522,0.97245,0.99472])
#AUC_DNN = np.array([0.90729,0.90475,0.90596,0.87725,0.93349,0.90674,0.85802,0.97674,0.97644,0.97210,0.94923,0.90743,0.96152,0.93995,0.96559,0.98142,0.99210,0.97635,0.92650,0.97343,0.99470])

N = mA.shape[0]

graph_DNN = TGraph2D(N)
graph_MEM = TGraph2D(N)
for i in range(0, N):
    graph_MEM.SetPoint(i, mA[i], mH[i], AUC_MEM[i])
    graph_DNN.SetPoint(i, mA[i], mH[i], AUC_DNN[i])

graph_MEM.SetNpx(500)
graph_MEM.SetNpy(500)
graph_DNN.SetNpx(500)
graph_DNN.SetNpy(500)

canvas = TCanvas('c1', 'c1', 1800, 700)
canvas.Divide(2, 1, 0.005)

canvas.cd(1)
gPad.SetRightMargin(0.2)
Exemplo n.º 24
0
def makePlot2D(filepath,foutname,medcfg,chicfg,header='',offshell=False):
  limits = parseLimitFiles2D(filepath)
  gs = {}
  for g in ['exp','expup','expdown','obs','obsup','obsdown']:
    gs[g] = TGraph2D()

  iP=0
  hgrid = TH2D('grid','grid',medcfg[0],medcfg[1],medcfg[2],chicfg[0],chicfg[1],chicfg[2])
  for p in limits:
    mMed = p[0]; mChi = p[1]
    l = limits[p]
    if l.obs==0 or l.cent==0:
      print mMed,mChi
      continue
    hgrid.Fill(mMed,mChi,100)
    gs['exp'].SetPoint(iP,mMed,mChi,l.cent)
    gs['expup'].SetPoint(iP,mMed,mChi,l.up1)
    gs['expdown'].SetPoint(iP,mMed,mChi,l.down1)
    gs['obs'].SetPoint(iP,mMed,mChi,l.obs)
    gs['obsup'].SetPoint(iP,mMed,mChi,l.obs/(1-XSECUNCERT))
    gs['obsdown'].SetPoint(iP,mMed,mChi,l.obs/(1+XSECUNCERT))
    iP += 1

  hs = {}
  for h in ['exp','expup','expdown','obs','obsup','obsdown']:
    hs[h] = TH2D(h,h,medcfg[0],medcfg[1],medcfg[2],chicfg[0],chicfg[1],chicfg[2])
    # hs[h].SetStats(0); hs[h].SetTitle('')
    for iX in xrange(0,medcfg[0]):
      for iY in xrange(0,chicfg[0]):
        x = medcfg[1] + (medcfg[2]-medcfg[1])*iX/medcfg[0]
        y = chicfg[1] + (chicfg[2]-chicfg[1])*iY/chicfg[0]
        if not(offshell) and 2*y>x:
          val = 9999
        else:
          val = gs[h].Interpolate(x,y)
        if val == 0:
          val = 9999
        val = max(0.01,min(100,val))
        hs[h].SetBinContent(iX+1,iY+1,val)


  hs['obsclone'] = hs['obs'].Clone() # clone it so we can draw with different settings
  for h in ['exp','expup','expdown','obsclone','obsup','obsdown']:
    hs[h].SetContour(2)
    hs[h].SetContourLevel(1,1)
    for iX in xrange(1,medcfg[0]+1):
      for iY in xrange(1,chicfg[0]+1):
        if hs[h].GetBinContent(iX,iY)<=0:
          hs[h].SetBinContent(iX,iY,100)

  


  global iC
  canvas = ROOT.TCanvas("canvas%i"%iC, '',  1000, 800)
  canvas.SetLogz()
  iC+=1

  frame = canvas.DrawFrame(medcfg[1],chicfg[1],medcfg[2],chicfg[2],"")

  frame.GetYaxis().CenterTitle();
  #frame.GetYaxis().SetTitle("m_{A} [TeV]");
  if options.thdm: frame.GetYaxis().SetTitle("m_{A} (TeV/c^{2})");
  if options.zpb:  frame.GetYaxis().SetTitle("m_{#chi} (TeV/c^{2})");
  frame.GetXaxis().SetTitle("m_{Z'} (TeV/c^{2})");
  frame.GetXaxis().SetTitleOffset(1.15);
  frame.GetYaxis().SetTitleOffset(1.15);
#  frame.GetXaxis().SetNdivisions(5)

  frame.Draw()

  htest = hs['exp']

  obs_color = root.kOrange

  hs['obs'].SetMinimum(0.01)
  hs['obs'].SetMaximum(100.)

  hs['obs'].Draw("COLZ SAME")

  hs['obsclone'].SetLineStyle(1)
  hs['obsclone'].SetLineWidth(3)
  hs['obsclone'].SetLineColor(obs_color)
  hs['obsclone'].Draw('CONT3 SAME')

  ctemp = root.TCanvas()
  hs['obsclone'].Draw('contlist')
  ctemp.Update()
  objs = root.gROOT.GetListOfSpecials().FindObject('contours')
  saveobs = root.TGraph((objs.At(0)).First())

  canvas.cd()

  root.gStyle.SetLineStyleString(11, '40 80')

  conts = {}

  hs['obsup'].SetLineStyle(3)
  hs['obsup'].SetLineWidth(2)
  hs['obsup'].SetLineColor(obs_color)
  conts['obsup'] = get_contours(hs['obsup'], canvas)[0]
  conts['obsup'].Draw('L SAME')
#  hs['obsup'].Draw('CONT3 SAME')

  hs['obsdown'].SetLineStyle(3)
  hs['obsdown'].SetLineWidth(2)
  hs['obsdown'].SetLineColor(obs_color)
  conts['obsdown'] = get_contours(hs['obsdown'], canvas)[0]
  conts['obsdown'].Draw('L SAME')
  #hs['obsdown'].Draw('CONT3 SAME')

  hs['exp'].SetLineStyle(1)
  hs['exp'].SetLineWidth(3)
  hs['exp'].SetLineColor(1)
  hs['exp'].Draw('CONT3 SAME')
  
  conts['exp'] = get_contours(hs['exp'], canvas)[0]
  conts['obsclone'] = get_contours(hs['obsclone'], canvas)[0]


  hs['expup'].SetLineStyle(3)
  hs['expup'].SetLineWidth(2)
  hs['expup'].SetLineColor(1)
  conts['expup'] = get_contours(hs['expup'], canvas)[0]
  conts['expup'].Draw('L SAME')
  #hs['expup'].Draw('CONT3 SAME')

  hs['expdown'].SetLineStyle(3)
  hs['expdown'].SetLineWidth(2)
  hs['expdown'].SetLineColor(1)
  conts['expdown'] = get_contours(hs['expdown'], canvas)[0]
  conts['expdown'].Draw('L SAME')
  #hs['expdown'].Draw('CONT3 SAME')


  graphroot = TFile("limitGraphs2HDMComboTanBeta.root","RECREATE")
  graphroot.cd()
  h_exp = conts['exp']
  h_exp.SetName("expected_curve")
  h_exp.Write()  
  #conts['exp'].Write()
  
  conts['expup'].Write()
  conts['expdown'].Write()
  #conts['obsclone'].Write()
  
  h_obs = conts['obsclone']
  h_obs.SetName("observed_curve")
  h_obs.Write()
  
  conts['obsup'].Write()
  conts['obsdown'].Write()

  



  if drawLegend:
    leg = root.TLegend(0.13,0.75,0.39,0.9);#,NULL,"brNDC");
    leg.SetHeader(header)
    leg.AddEntry(hs['exp'],"Median expected 95% CL","L");
    leg.AddEntry(hs['expup'],"Exp. #pm 1 #sigma_{experiment}","L");
    leg.AddEntry(hs['obsclone'],"Observed 95% CL","L");
    leg.AddEntry(hs['obsup'],"Obs. #pm 1 #sigma_{theory}","L");
    leg.SetFillColor(0); leg.SetBorderSize(0)
    leg.Draw("SAME");

  tex = root.TLatex();
  tex.SetNDC();
  tex.SetTextFont(42);
  tex.SetLineWidth(2);
  tex.SetTextSize(0.040);
  tex.Draw();
  tex.DrawLatex(0.65,0.94,"35.9 fb^{-1} (13 TeV)");

  coupling = root.TLatex();
  coupling.SetNDC();
  coupling.SetTextFont(42);
  coupling.SetLineWidth(2);
  coupling.SetTextSize(0.025);
  coupling.SetTextColor(0);
  coupling.Draw();
  if options.thdm: 
    coupling.DrawLatex(0.15,0.70,"g_{Z'} = 0.8, g_{#chi} = 1");
    coupling.DrawLatex(0.15,0.65,"m_{#chi} = 100 GeV, tan#beta = 1");
  
  if options.zpb: coupling.DrawLatex(0.15,0.70,"g_{q} = 0.25, g_{#chi} = 1");



  tex2 = root.TLatex();
  tex2.SetNDC();
  tex2.SetTextFont(42);
  tex2.SetLineWidth(2);
  tex2.SetTextSize(0.04);
  tex2.SetTextAngle(90);
  tex2.SetTextAlign(33)
  tex2.DrawLatex(0.965,0.93,"Observed #sigma_{95% CL}/#sigma_{theory}");

  texCMS = root.TLatex(0.12,0.94,"#bf{CMS}");
  texCMS.SetNDC();
  texCMS.SetTextFont(42);
  texCMS.SetLineWidth(2);
  texCMS.SetTextSize(0.05); texCMS.Draw();

  root.gPad.SetRightMargin(0.15);
  root.gPad.SetTopMargin(0.07);
  root.gPad.SetBottomMargin(0.15);
  root.gPad.RedrawAxis();
  root.gPad.Modified(); 
  root.gPad.Update();

  canvas.SaveAs(foutname+'.png')
  canvas.SaveAs(foutname+'.pdf')
  
  texPrelim = root.TLatex(0.2,0.94,"");
  texPrelim.SetNDC();
  texPrelim.SetTextFont(42);
  texPrelim.SetLineWidth(2);
  texPrelim.SetTextSize(0.05); texPrelim.Draw();

  canvas.SaveAs(foutname+'_prelim.png')
  canvas.SaveAs(foutname+'_prelim.pdf')
  
  canvas.SetGrid()

  hgrid.Draw('BOX')
  hs['obsup'].Draw('CONT3 SAME')

  hs['obsdown'].Draw('CONT3 SAME')

  hs['exp'].Draw('CONT3 SAME')

  hs['expup'].Draw('CONT3 SAME')

  hs['expdown'].Draw('CONT3 SAME')

  canvas.SaveAs(foutname+'_grid.png')
  canvas.SaveAs(foutname+'_grid.pdf')

  fsave = root.TFile(foutname+'.root','RECREATE')
  fsave.WriteTObject(hs['obs'],'hobserved')
  fsave.WriteTObject(gs['obs'],'gobserved')
  fsave.WriteTObject(hs['exp'],'hexp')
  fsave.WriteTObject(gs['exp'],'gexp')
  fsave.WriteTObject(saveobs,'observed')
  fsave.Close()
    def makeAndStorePlot(self, inputfilename, iSkip=2, strObsName="MPV", outputfilename="AnaSuiteClustQOutput.root", strFileOpt="RECREATE"):
        #Load the data from an input text file
        clustChargeData = np.loadtxt(inputfilename, skiprows=iSkip)

        #Splice the clustChargeData into HVORGAIN & CLUSTSIZE
        self.ARRAY_HVORGAIN = clustChargeData[:,0]
        self.ARRAY_CLUSTSIZE= clustChargeData[:,1]

        #Print the shape if requested
        if self.DEBUG:
            print "Shape of clustChargeData = {0}".format(clustChargeData.shape)
            print "Shape of self.ARRAY_HVORGAIN = {0}".format(self.ARRAY_HVORGAIN.shape)
            print "Shape of self.ARRAY_CLUSTSIZE = {0}".format(self.ARRAY_CLUSTSIZE.shape)

        #Reparameterize in terms of Gain?
        strIndepVarName = "VDrift"
        if self.TRANSFORM2GAIN:
            strIndepVarName = "EffGain"
            #array_X = self.GAIN_CALCULATOR.calcGain(array_X)
            self.ARRAY_HVORGAIN = self.GAIN_CALCULATOR.calcGain(self.ARRAY_HVORGAIN)

        #Transform input observable name to uppercase
        strObsName = strObsName.upper()

        #Initialize the correct TGraph2D
        g2D_ClustQ_Obs = TGraph2D(len(clustChargeData))
        g2D_ClustQ_Obs.SetTitle("")
        if strObsName == self.STROBSNAME_MPV:
           #self.G2D_CLUSTQ_MPV.Set( len(clustChargeData) )
           #self.G2D_CLUSTQ_MPV.SetName("g2D_ClusterChargeMPV_StripSize_vs_" + strIndepVarName)
           #self.G2D_CLUSTQ_MPV.SetTitle("")
	   g2D_ClustQ_Obs.SetName("g2D_ClusterChargeMPV_StripSize_vs_{0}".format(strIndepVarName))
           self.ARRAY_CLUSTQ_MPV = clustChargeData[:,2]
        elif strObsName == self.STROBSNAME_MEAN:
           #self.G2D_CLUSTQ_MEAN.Set( len(clustChargeData) )
           #self.G2D_CLUSTQ_MEAN.SetName("g2D_ClusterChargeMean_StripSize_vs_" + strIndepVarName)
           #self.G2D_CLUSTQ_MEAN.SetTitle("")
	   g2D_ClustQ_Obs.SetName("g2D_ClusterChargeMean_StripSize_vs_{0}".format(strIndepVarName))
           self.ARRAY_CLUSTQ_MEAN = clustChargeData[:,2]
        elif strObsName == self.STROBSNAME_SIGMA:
           #self.G2D_CLUSTQ_SIGMA.Set( len(clustChargeData) )
           #self.G2D_CLUSTQ_SIGMA.SetName("g2D_ClusterChargeSigma_StripSize_vs_" + strIndepVarName)
           #self.G2D_CLUSTQ_SIGMA.SetTitle("")
	   g2D_ClustQ_Obs.SetName("g2D_ClusterChargeSigma_StripSize_vs_{0}".format(strIndepVarName))
           self.ARRAY_CLUSTQ_SIGMA = clustChargeData[:,2]
        else:
            print "Input Observable Name: {0}".format(strObsName)
            print "Was not recognized, please cross-check and re-run"
            print "Exiting"
            return

        #Set the points
        for i in range(0, len(clustChargeData)):
           if strObsName == self.STROBSNAME_MPV:
               #self.G2D_CLUSTQ_MPV.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_MPV[i])
               g2D_ClustQ_Obs.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_MPV[i])
           elif strObsName == self.STROBSNAME_MEAN:
               #self.G2D_CLUSTQ_MEAN.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_MEAN[i])
               g2D_ClustQ_Obs.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_MEAN[i])
           elif strObsName == self.STROBSNAME_SIGMA:
               #self.G2D_CLUSTQ_SIGMA.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_SIGMA[i])
               g2D_ClustQ_Obs.SetPoint(i, self.ARRAY_HVORGAIN[i], self.ARRAY_CLUSTSIZE[i], self.ARRAY_CLUSTQ_SIGMA[i])

        #Reshape the arrays for later analysis
        self.ARRAY_HVORGAIN = np.unique(self.ARRAY_HVORGAIN)
        self.ARRAY_CLUSTSIZE = np.unique(self.ARRAY_CLUSTSIZE)

        if strObsName == self.STROBSNAME_MPV:
           self.ARRAY_CLUSTQ_MPV	= np.reshape(self.ARRAY_CLUSTQ_MPV,(len(self.ARRAY_HVORGAIN),len(self.ARRAY_CLUSTSIZE)),order='F')
        elif strObsName == self.STROBSNAME_MEAN:
           self.ARRAY_CLUSTQ_MEAN	= np.reshape(self.ARRAY_CLUSTQ_MEAN,(len(self.ARRAY_HVORGAIN),len(self.ARRAY_CLUSTSIZE)),order='F')
        elif strObsName == self.STROBSNAME_SIGMA:
           self.ARRAY_CLUSTQ_SIGMA	= np.reshape(self.ARRAY_CLUSTQ_SIGMA,(len(self.ARRAY_HVORGAIN),len(self.ARRAY_CLUSTSIZE)),order='F')

        #Store the Plot
        #outputFile = TFile(outputfilename,strFileOpt,"",1)

        #dir_Out = []
        #if strFileOpt == "UPDATE":
           #dir_Out = outputFile.GetDirectory("ClusterChargeData")
        #else:
           #dir_Out = outputFile.mkdir("ClusterChargeData")

	dir_Out = self.FILE_OUT.mkdir("ClusterChargeData")
        dir_Out.cd()
        g2D_ClustQ_Obs.Write()

        outputFile.Close()

        return
Exemplo n.º 26
0
        print "Could not find a valid value for par %s in filename: %s !" % (
            par, file)

    return val


ROOT.gStyle.SetPalette(1)

par1 = options.par1
par2 = options.par2

par1Latex = options.par1Latex
par2Latex = options.par2Latex

limits = {
    '-2s': [TGraph2D(), 0],
    '-1s': [TGraph2D(), 1],
    'mean': [TGraph2D(), 2],
    '+1s': [TGraph2D(), 3],
    '+2s': [TGraph2D(), 4],
    'obs': [TGraph2D(), 5]
}

n = 0
for file in glob(options.input):
    if '.root' not in file:
        print "Skipped non-root file: %s" % file
        continue

    par1val = extractParValue(par1, file)
    par2val = extractParValue(par2, file)
Exemplo n.º 27
0
    def analyzeMeshes(self, dictOfMeshes, doCull=False, cullCut=0.90):
        """ analyzeMeshes takes a dictionary with meshes as input, and fits it to the references
        output dictionary includes a deepcopy of the input meshes
        note:
           this fits to zDiff = dictOfMeshes - interpolation of self.meshDict
           ie. the sign is defined as (other guy) - (me)
        """
        # deepcopy the meshes! no longer adjusts in place
        dictOfMeshesCopy = {}
        for key in list(dictOfMeshes.keys()):
            theMesh = copy.deepcopy(dictOfMeshes[key])
            dictOfMeshesCopy[key] = theMesh

        # then we analyze the Zernike polynomials by comparing them to stored references
        # analyzeDonuts returns a dictionary containing deltas and rotation angles for focus, astigmatism and coma
        # as well as the hexapod adjustments
        # it also makes a Canvas of plots for study

        dictOfResults = {}

        # loop over keys, fitting References
        for key in list(dictOfMeshesCopy.keys()):

            # some special cases
            resultsKeyName = "%sResultDict" % (key.replace("Mesh", ""))
            meshName = key
            if key == "z4Mesh":
                print("Python 3 debugging: %r" % self.meshDict)
                dictOfResults[resultsKeyName] = self.fitToRefMesh(
                    self.meshDict[meshName], dictOfMeshesCopy[meshName],
                    self.zangleconv)
            elif key == "rzeroMesh":
                dictOfResults[resultsKeyName] = self.analyzeRzero(
                    dictOfMeshesCopy["rzeroMesh"],
                    dictOfMeshesCopy["chi2Mesh"], dictOfMeshesCopy["neleMesh"])
            elif key == "chi2Mesh":
                continue
            elif key == "neleMesh":
                continue
            else:
                # check that meshDict has the appropriate mesh
                if meshName in self.meshDict:
                    dictOfResults[resultsKeyName] = self.fitToRefMesh(
                        self.meshDict[meshName], dictOfMeshesCopy[meshName])

        # if we want to cull, cull and refit!
        # use the fitted weight to cull - culltype="fit"
        if doCull:
            # this will take the wgt's from the fit and take their product
            # for each point, and cull at a product of cullCut
            self.cullAllMeshes(dictOfMeshesCopy, cullCut=cullCut)

            for key in list(dictOfMeshesCopy.keys()):

                # some special cases
                resultsKeyName = "%sResultDict" % (key.replace("Mesh", ""))
                meshName = key
                if key == "z4Mesh":
                    dictOfResults[resultsKeyName] = self.fitToRefMesh(
                        self.meshDict[meshName], dictOfMeshesCopy[meshName],
                        self.zangleconv)
                elif key == "rzeroMesh":
                    dictOfResults[resultsKeyName] = self.analyzeRzero(
                        dictOfMeshesCopy["rzeroMesh"],
                        dictOfMeshesCopy["chi2Mesh"],
                        dictOfMeshesCopy["neleMesh"])
                elif key == "chi2Mesh":
                    continue
                elif key == "neleMesh":
                    continue
                else:
                    # check that meshDict has the appropriate mesh
                    if meshName in self.meshDict:
                        dictOfResults[resultsKeyName] = self.fitToRefMesh(
                            self.meshDict[meshName],
                            dictOfMeshesCopy[meshName])

        # analyze this data and extract the hexapod coefficients
        donutDict = self.calcHexapod(dictOfResults)

        if len(donutDict) == 0:
            goodCalc = False
        else:
            goodCalc = True

        # add the individual fit results here too
        for key in list(dictOfResults.keys()):
            donutDict[key] = dictOfResults[key]

        # and add the meshes too
        for key in list(dictOfMeshesCopy.keys()):
            donutDict[key] = dictOfMeshesCopy[key]

        # cmr add X and Y coords
        keylist = list(dictOfResults.keys())
        key0 = keylist[0]
        dict0 = dictOfResults[key0]
        donutDict['deltaArrayX'] = dict0['deltaArrayX']
        donutDict['deltaArrayY'] = dict0['deltaArrayY']

        # make a Canvas of plots for this image
        # plot Histogram of Difference before fit, after fit, and after fit vs. X,Y position
        if self.paramDict["histFlag"] and "deltaArrayBefore" in dictOfResults[
                "z4ResultDict"] and goodCalc:

            # setup plots
            gStyle.SetStatH(0.32)
            gStyle.SetStatW(0.4)
            gStyle.SetOptStat(1111111)
            gStyle.SetMarkerStyle(20)
            gStyle.SetMarkerSize(0.5)
            gStyle.SetPalette(1)
            gROOT.ForceStyle()

            # loop over results, making plots for each
            nplots = 0
            plotDict = {}
            for key in list(dictOfResults.keys()):
                theResultDict = dictOfResults[key]

                keyId = key.replace("ResultDict", "")
                # special cases
                if keyId == "z4":
                    nWavesBefore = 200.0
                    nWavesAfter = 200.0
                else:
                    nWavesBefore = 2.0
                    nWavesAfter = 0.2

                if keyId != "rzero":
                    nplots = nplots + 1
                    hBefore = hfillhist(key + "Before",
                                        "Delta " + key + ", Before Fit",
                                        theResultDict["deltaArrayBefore"], 200,
                                        -nWavesBefore, nWavesBefore)
                    hAfter = hfillhist(key + "zAfter",
                                       "Delta " + key + ", After Fit",
                                       theResultDict["deltaArrayAfter"], 200,
                                       -nWavesAfter, nWavesAfter)
                    hBefore2D = TGraph2D(
                        key + "Before2D", "Delta " + key +
                        ", Before Fit, vs. Position;X[mm];Y[mm]",
                        theResultDict["deltaArrayBefore"].shape[0],
                        theResultDict["deltaArrayX"],
                        theResultDict["deltaArrayY"],
                        theResultDict["deltaArrayBefore"])
                    hAfter2D = TGraph2D(
                        key + "After2D", "Delta " + key +
                        ", After Fit, vs. Position;X[mm];Y[mm]",
                        theResultDict["deltaArrayAfter"].shape[0],
                        theResultDict["deltaArrayX"],
                        theResultDict["deltaArrayY"],
                        theResultDict["deltaArrayAfter"])

                    plotList = [hBefore, hAfter, hBefore2D, hAfter2D]
                    plotDict[keyId] = plotList

            # the Canvas

            # unique name for our canvas
            # might be that
            # gROOT.SetBatch(kTRUE)
            # will prevent the Canvas from appearing, but will still get made in output pickle
            tstr = "canvas" + str(time.time())

            canvas = TCanvas(tstr, tstr, 300 * nplots, 1000)
            canvas.Divide(nplots, 4)

            # plot em
            jZ = 0
            for iZ in range(4, 15 + 1):
                key = "z%d" % (iZ)
                if key in plotDict:
                    jZ = jZ + 1

                    plotList = plotDict[key]

                    icanvas = jZ + 0 * nplots
                    canvas.cd(icanvas)
                    plotList[0].Draw()
                    icanvas = jZ + 1 * nplots
                    canvas.cd(icanvas)
                    plotList[1].Draw()
                    icanvas = jZ + 2 * nplots
                    canvas.cd(icanvas)
                    plotList[2].Draw("zcolpcol")
                    icanvas = jZ + 3 * nplots
                    canvas.cd(icanvas)
                    plotList[3].Draw("zcolpcol")

            # set it so that python doesn't own these ROOT object
            for key in list(plotDict.keys()):
                for plot in plotDict[key]:
                    SetOwnership(plot, False)

            # save canvas in the output Dictionary
            donutDict["canvas"] = canvas

        # all done
        return donutDict
Exemplo n.º 28
0
                                    for plane in otherplanes:
                                        branches[plane[0]][0] = float(
                                            randint(0, 11))
                                    scores.append(reader.EvaluateMVA(ML))
                                MLscore = sum(scores) / float(len(scores))

                            plane_y.append(float(strip1))
                            plane_x.append(float(strip2))
                            MLscores.append(MLscore)

                    ########## Make canvases, draw plots, and save them
                    c = TCanvas(
                        sample[0] + "_" + planey[1] + "vs" + planex[1] + "vs" +
                        ML, sample[0] + "_" + planey[1] + "vs" + planex[1] +
                        "vs" + ML)
                    gr = TGraph2D(len(MLscores), plane_x, plane_y, MLscores)
                    gr.SetName(sample[1] + " " + planey[1] + " vs " +
                               planex[1] + " vs " + ML + " score")
                    gr.Draw("COLZ")
                    c.Update()
                    gr.SetTitle(sample[1] + " " + planey[1] + " vs " +
                                planex[1] + " vs " + ML + " score")
                    gr.GetXaxis().SetTitle(planex[1])
                    gr.GetYaxis().SetTitle(planey[1])
                    gr.GetZaxis().SetTitle(ML + " score")
                    gr.GetZaxis().SetTitleOffset(1.2)

                    d_out.cd()
                    c.Write()
                    c.SaveAs(folder + "/%s.pdf" % (c.GetName()))
    def calcGainMapHV(self, strDetName, hvPt):
        #Create the new TGraph2D - Gain
        g2D_Map_Gain_hvPt = TGraph2D( self.G2D_MAP_GAIN_ORIG.GetN() )
        #g2D_Map_Gain_hvPt.SetName( "g2D_" + strDetName + "_EffGain_AllEta_" + str(int(hvPt)) )
        g2D_Map_Gain_hvPt.SetName( "g2D_{0}_EffGain_AllEta_{1}".format(strDetName, int(hvPt)) )

        #Create the new TGraph2D - Discharge Probability
        g2D_Map_PD_hvPt = TGraph2D( self.G2D_MAP_GAIN_ORIG.GetN() )
        #g2D_Map_PD_hvPt.SetName( "g2D_" + strDetName + "_PD_AllEta_" + str(int(hvPt)) )
        g2D_Map_PD_hvPt.SetName( "g2D_{0}_PD_AllEta_{1}".format(strDetName, int(hvPt)) )

        #Get the arrays that make the response uniformity map
        array_fPx = self.G2D_MAP_GAIN_ORIG.GetX()
        array_fPy = self.G2D_MAP_GAIN_ORIG.GetY()
        array_fPz = self.G2D_MAP_GAIN_ORIG.GetZ()
        
        #Calculate alpha
        alpha = self.calcAlpha(hvPt)
        
        #Loop Over all Points of self.G2D_MAP_ABS_RESP_UNI
        array_Gain_Vals = np.zeros(self.G2D_MAP_ABS_RESP_UNI.GetN())
        array_PD_Vals = np.zeros(self.G2D_MAP_ABS_RESP_UNI.GetN())
        for i in range(0, self.G2D_MAP_ABS_RESP_UNI.GetN() ):
            #Set the i^th point in self.G2D_MAP_GAIN_ORIG
            array_Gain_Vals[i] = array_fPz[i] * alpha
            array_PD_Vals[i] = self.PD_CALCULATOR.calcPD(array_fPz[i] * alpha)
            g2D_Map_Gain_hvPt.SetPoint(i, array_fPx[i], array_fPy[i], array_fPz[i] * alpha)
            g2D_Map_PD_hvPt.SetPoint(i, array_fPx[i], array_fPy[i], self.PD_CALCULATOR.calcPD(array_fPz[i] * alpha) )
    
        #Store Average, Std. Dev., Max, & Min Gain
        array_Gain_Vals = rejectOutliers(array_Gain_Vals)
        self.DET_IMON_POINTS.append(hvPt)
        self.GAIN_AVG_POINTS.append(np.mean(array_Gain_Vals) )
        self.GAIN_STDDEV_POINTS.append(np.std(array_Gain_Vals) )
        self.GAIN_MAX_POINTS.append(np.max(array_Gain_Vals) )
        self.GAIN_MIN_POINTS.append(np.min(array_Gain_Vals) )
            
        #Store Average, Std. Dev., Max & Min P_D
        array_PD_Vals = rejectOutliers(array_PD_Vals)
        self.PD_AVG_POINTS.append(np.mean(array_PD_Vals) )
        self.PD_STDDEV_POINTS.append(np.std(array_PD_Vals) )
        self.PD_MAX_POINTS.append(np.max(array_PD_Vals) )
        self.PD_MIN_POINTS.append(np.min(array_PD_Vals) )

        #Draw the effective gain map
        #canv_Gain_Map_hvPt = TCanvas("canv_" + strDetName + "_EffGain_AllEta_" + str(int(hvPt)),"Gain Map - hvPt = " + str(hvPt),600,600)
        canv_Gain_Map_hvPt = TCanvas("canv_{0}_EffGain_AllEta_{1}".format(strDetName, int(hvPt)),"Gain Map - hvPt = {0}".format(hvPt),600,600)
        canv_Gain_Map_hvPt.cd()
        canv_Gain_Map_hvPt.cd().SetLogz(1)
        g2D_Map_Gain_hvPt.Draw("TRI2Z")

        #Draw the discharge probability map
        #canv_PD_Map_hvPt = TCanvas("canv_" + strDetName + "_PD_AllEta_" + str(int(hvPt)),"Discharge Probability Map - hvPt = " + str(hvPt),600,600)
        canv_PD_Map_hvPt = TCanvas("canv_{0}_PD_AllEta_{1}".format(strDetName,int(hvPt)),"Discharge Probability Map - hvPt = {0}".format(hvPt),600,600)
        canv_PD_Map_hvPt.cd()
        canv_PD_Map_hvPt.cd().SetLogz(1)
        g2D_Map_PD_hvPt.Draw("TRI2Z")
        
        #Write the effective gain map to the output file
        #dir_hvPt = self.FILE_OUT.mkdir( "GainMap_HVPt" + str(int(hvPt)) )
        dir_hvPt = self.FILE_OUT.mkdir( "GainMap_HVPt{0}".format(int(hvPt)) )
        dir_hvPt.cd()
        canv_Gain_Map_hvPt.Write()
        g2D_Map_Gain_hvPt.Write()
        canv_PD_Map_hvPt.Write()
        g2D_Map_PD_hvPt.Write()
            
        return g2D_Map_Gain_hvPt
Exemplo n.º 30
0
args = parser.parse_args()
N = args.nEvents
name = args.name
draw = args.draw
opt = args.opt
out = args.output
print(N)
print(name[1:])
print(opt)
title = ""
if (name == "gArg" or name == "gAbs"):
    title = name[
        1:] + "(A(m^{2}_{K_{S}^{0}#pi^{+}},m^{2}_{K_{S}^{0}#pi^{-}})); m^{2}_{K_{S}^{0}#pi^{+}}(GeV); m^{2}_{K_{S}^{0}#pi^{-}} (GeV)"

os.system("Generator --nEvents %i --Output %s.root %s.opt" % (N, opt, opt))
f = TFile.Open("%s.root" % (opt))
s = f.Get(name)
c = TCanvas("c_%s" % (name), name, 1000, 1000)
c.cd()

gStyle.SetPalette(55)

if (type(s) == TH2D):
    s = TGraph2D(s)

s.SetMargin(0.1)

print(type(s))
s.SetTitle(title)
s.Draw(draw)
c.SaveAs("%s.png" % (out))