Exemplo n.º 1
0
 def plot_aggs_stat(self):
     # This function plots the all aggregated statistics
     # x: aggregated time;
     # y: particular metrics
     list_func = func_lists()
     dis_mat = read_dis_file('Rain_gauges.xlsx', self.gauge_all)
     for col in self.gauge_all.columns:
         for key in list_func.keys():
             df = self.single_stat(key)
             Stations = cluster_num(dis_mat[col], 5)
             df_new = df.loc[:, Stations.keys()]
             trace = []
             for col2 in df_new.columns:
                 trace.append(
                     go.Scatter(x=df_new.index,
                                y=df_new[col2],
                                name=str(col2) + '   ' +
                                str(round(Stations[col2] / 1000)) + 'km'))
             layout = go.Layout(title=f'{col}-{key}')
             fig = go.Figure(data=trace, layout=layout)
             os.chdir('./metrics-analysis')
             plotly.offline.plot(fig,
                                 filename=f'{col}-{key}.html',
                                 auto_open=False)
             os.chdir('../')
Exemplo n.º 2
0
 def cal_all_agg_stat(self):
     aggs = np.arange(60, 1500, 60)
     aggs = np.r_[10, 30, aggs]
     aggs = [str(i) + 'min' for i in aggs]
     #        aggs = ['30min', '60min', '120min', '180min', '240min', '300min']
     gauge_10min, radar_10min = self.read_gauge_radar_10min()
     writer = pd.ExcelWriter('agg_all_stat_new.xlsx')
     for agg in aggs:
         if agg == '10min':
             stat = statistics(gauge_10min, radar_10min, func_lists()).T
             stat.to_excel(writer, sheet_name=f'{agg}')
         else:
             gauge, radar = self.data_agg(
                 gauge_10min, freq=agg), self.data_agg(radar_10min,
                                                       freq=agg)
             stat = statistics(gauge, radar, func_lists()).T
             stat.to_excel(writer, sheet_name=f'{agg}')
             print(f'{agg} completed')
Exemplo n.º 3
0
def statistics_cal_station(writer):
    '''
    for station based statistics, concatenate all events together to calculate one value
    '''
    func_list = func_lists()
    gauge, radar, inds = eventselect()
    gauge_station = pd.DataFrame()
    radar_station = pd.DataFrame()
    for i, ind in enumerate(inds):
        _gauge_station = gauge[ind]
        _radar_station = radar[ind]
        gauge_station = gauge_station.append(_gauge_station, ignore_index=True)
        radar_station = radar_station.append(_radar_station, ignore_index=True)
    stat_station = statistics(gauge_station, radar_station, func_list)
    stat_station.to_excel(writer, sheet_name='station')
    return stat_station
Exemplo n.º 4
0
def statistics_cal_event(writer):
    '''
    for event based statistics, concatenate all stations in one event
    '''
    func_list = func_lists()
    gauge, radar, inds = eventselect()
    col_names = [f'event{i+1}' for i in range(len(inds))]
    stats = pd.DataFrame(columns=col_names, index=func_list.keys())
    col = gauge.columns
    radar = radar.loc[:, col]
    for i, ind in enumerate(inds):
        _gauge_event = gauge[ind]
        _radar_event = radar[ind]
        for key, func in func_list.items():
            stats[f'event{i+1}'][key] = func(_gauge_event.agg('sum', axis=1),
                                             _radar_event.agg('sum', axis=1))
    stats.to_excel(writer, sheet_name='event')
    return stats
from AggregateAllScripts import RadarGauge
from RadarGauge_statistics import func_lists, statistics

#try with 1 hour data

os.chdir('D:\\Radar Projects\\lizhi\\for LiZhi')
#RG = RadarGauge('D:\\Radar Projects\\lizhi\\for LiZhi')
#RG.cal_all_agg_stat() #calculate all statistics over each station output agg_all_stat_new.xlsx
#_ = RG.read_gauge_all_data() # this just initialize all needed data no need to store
#RG.plot_aggs_stat()  #this plot every statistic at each station
#adjusted_rain = pd.read_excel('10min-bias-adjusted.xlsx')
radar_1h = pd.read_excel('60min-gauge-radar.xlsx', sheet_name='radar')
radar_30min = pd.read_excel('30min-gauge-radar.xlsx', sheet_name='radar')
radar_10min = pd.read_excel('10min-gauge-radar.xlsx', sheet_name='radar')
radar_180min = pd.read_excel('180min-gauge-radar.xlsx', sheet_name='radar')
radars = [radar_1h, radar_30min, radar_10min, radar_180min]
xl = pd.ExcelFile('marked-data-old.xlsx')
sheet_names = xl.sheet_names
writer = pd.ExcelWriter('Statistics-marked-old.xlsx')
for i, sheet_name in enumerate(sheet_names):
    gauge = xl.parse(sheet_name)
    stat = statistics(gauge, radars[i], func_lists())
    stat.to_excel(writer, sheet_name=sheet_name)
writer.close()

gauge_10min = pd.read_excel('10min-bias-adjusted-each.xlsx')
func_lists = func_lists()
stats = statistics(gauge_10min[gauge_10min.index > '2018-11-14'],
                   radar_10min[radar_10min.index > '2018-11-14'], func_lists)
func_lists['pearson'](gauge_10min['S100'][gauge_10min.index > '2018-11-14'],
                      radar_10min['S100'][radar_10min.index > '2018-11-14'])
Exemplo n.º 6
0
 def statistics_day(self, writer):
     return daily(func_lists(), writer)
Exemplo n.º 7
0
 def statistics_10min(self, writer):
     return tens(func_lists(), writer)