Exemplo n.º 1
0
    def load_franke_data(self, cfg: CN, perm_index):
        x, y, z = create_frankie_data(cfg.SEED, cfg.DATA.FRANKIE.N,
                                      cfg.DATA.FRANKIE.NOISE)
        X = create_X(x, y, cfg.DATA.FRANKIE.P)

        self.split_and_scale_train_test(X,
                                        z,
                                        perm_index,
                                        test_size=cfg.TEST_SIZE)
        return self
Exemplo n.º 2
0
def create_test_data():
    seed = 3155

    N = 20
    noise_strength = 0.1
    p = 5 

    x, y, z = create_frankie_data(seed, N, noise_strength)
    X = create_X(x, y, p)
    return X, z
Exemplo n.º 3
0
# Cross valid and bootstrap for different alphas

N = 40
noise = 0.3
p = 4

alphas = [0.0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
l = len(alphas)

trials = 1000
sample_count = N

kfolds = 5

x, y, z = create_frankie_data(SEED, N, noise_strength=noise)
perm_index = np.random.permutation(len(z))

mse_boot = np.zeros(l)
mse_kfold = np.zeros(l)
mse_boot_train = np.zeros(l)
mse_kfold_train = np.zeros(l)
bias_boot = np.zeros(l)
var_boot = np.zeros(l)

for i in range(len(alphas)):
    progressBar(i + 1, l)

    X = create_X(x, y, p, debug=False)

    crossval = CrossValidationKFold(kfolds).train_and_test(