def pceManifold(json, title, xtype, ytype, xlabel, ylabel, lxrange, uxrange,
                lyrange, uyrange, trace_type, x_trace, y_trace, trace_name,
                queue):
    engine = PlotControlEngine(json)

    xtrace = []
    ytrace = []

    if x_trace is not None and y_trace is not None and trace_type is not None:
        try:
            xtrace = array([float(y) for y in x_trace if extractor(y)])
            ytrace = array([float(x) for x in y_trace if extractor(x)])
        except ValueError:
            print(
                'Exception raised in pceManifold() when attempting to cast types'
            )
        engine.addTrace(xtrace, ytrace, trace_name, trace_type)
    if lxrange is not None and uxrange is not None:
        engine.changeXRange(lxrange, uxrange)
    if lyrange is not None and uyrange is not None:
        engine.changeYRange(lyrange, uyrange)
    if xtype is not None:
        engine.changeXType(xtype)
    if ytype is not None:
        engine.changeYType(ytype)
    if xlabel is not None:
        engine.changeXLabel(xlabel)
    if ylabel is not None:
        engine.changeYLabel(ylabel)
    if title is not None:
        engine.changeTitle(title)

    queue.put(engine.render())
Exemplo n.º 2
0
    def __init__(self, _sample, _svgr=None):
        self.rock = _sample
        self.tortuosidade = []
        self.svgr = None
        self.rock.setPhi([p / 100 for p in _sample.getPhi()])  # convert porosity from % to decimal

        if _svgr is None:
            _svgr = []
        else:
            self.svgr = [float(y) for y in _svgr if extractor(y)]
Exemplo n.º 3
0
def histogramManifold(data, _nbins, queue):
    if _nbins == '':
        _nbins=0
    data = np.array([float(y) for y in data if extractor(y)])
    try:
        ndata = pd.DataFrame(data)
        nbins = int(_nbins)
    except ValueError:
        return 'Error'
    hst = Histogram(data, nbins)
    hst.plot()
    queue.put([hst.plot_path, hst.json])
Exemplo n.º 4
0
def boxplotDataCleaner(_data):
    #flatten, remove strs and then convert to df

    ndata = pd.DataFrame(_data).transpose()
    rows = ndata.shape[1]
    columns = ndata.shape[0]

    auxdata = []

    for c in range(columns):
        d = [float(x) for x in list(ndata.iloc[c]) if extractor(x)]
        auxdata.append(d)

    return pd.DataFrame(auxdata).transpose()
Exemplo n.º 5
0
def statisticsManifold(_xdata: list, method: str, quartile, percentile, queue):
    xdata = np.array([float(x) for x in _xdata if extractor(x)])

    st = Statistics(xdata)
    methods = [
        'Média aritmética', 'Média Ponderada', 'Mediana', 'Moda',
        'Variância Pop.', 'Variância Am.', 'Desvio Padrão Pop.',
        'Desvio Padrão Am.', 'Máximo', 'Mínimo', 'Amplitude', 'Quartil',
        'Percentil'
    ]
    container = []

    if method == methods[0]:
        container.append(st.average())
    if method == methods[1]:
        container.append(st.average())
    if method == methods[2]:
        container.append(st.median())
    if method == methods[3]:
        container.append(st.mode())
    if method == methods[4]:
        container.append(st.varP())
    if method == methods[5]:
        container.append(st.varS())
    if method == methods[6]:
        container.append(st.stdevP())
    if method == methods[7]:
        container.append(st.stdevS())
    if method == methods[8]:
        container.append(st.max())
    if method == methods[9]:
        container.append(st.min())
    if method == methods[10]:
        container.append(st.range())
    if method == methods[11]:
        container.append(st.quartile(quartile))
    if method == methods[12]:
        container.append(st.percentile(percentile))

    queue.put(container)