Exemplo n.º 1
0
def hide_non_minimal_complexes(pdb_object):
    scores = rosetta.parse_scores(pdb_object.minimized.scores.read())
    hidden_folder = pdb_object.minimized.hidden_complexes.path
    hidden_folder.delete()
    storage.make_directory(hidden_folder)
    for number in list(scores.keys())[1:]:
        complex_path = pdb_object.minimized.complex.pdb[number].path
        storage.move(complex_path, hidden_folder, no_fail=True)
Exemplo n.º 2
0
def hide_non_minimal_complexes(pdb_object):
    """Generate constraint file for Rosetta minimization.
    Constraints are added to maintain contact ions close to their original positions.

    pdb_object : PDBObject
        PDB structure to be handled
    """
    scores = rosetta.parse_scores(pdb_object.minimized.scores.read())
    hidden_folder = pdb_object.minimized.hidden_complexes.path
    storage.make_directory(hidden_folder)
    for number in list(scores.keys())[1:]:
        complex_path = pdb_object.minimized.complex.pdb[number].path
        print("Hiding ", complex_path)
        storage.move(complex_path, hidden_folder, no_fail=True)
Exemplo n.º 3
0
def generate_tfrecords(dataset_object):
    """Generate TFRecords from a dataset's combined images.

    dataset_object : DatasetObject
        Dataset of the images.
    """
    files = dataset_object.images
    chunks = chunk_by_size(files)
    storage.clear_directory(dataset_object.tfrecords, no_fail=True)
    storage.make_directory(dataset_object.tfrecords, no_fail=True)
    lines = dataset_object.labels.read().splitlines()
    lines = [line.split(" ") for line in lines]
    pdb_labels = dict([(line[0], line[1:]) for line in lines])
    for i, chunk in enumerate(chunks):
        write_tfrecords(chunk, dataset_object, i, pdb_labels)
Exemplo n.º 4
0
def combine_maps(pdb_object):
    """Postprocessing step for combining the feature map images into one image

    Parameters
    ----------
    pdb_object : PDBObject
        PDB object which images will be combined
    """
    features = [
        pdb_object.image.htmd.read(),
        pdb_object.image.electronegativity.read(),
        pdb_object.image.rosetta.read()
    ]
    grid = np.concatenate(features, axis=-1)
    storage.make_directory(pdb_object.image.combined.path.parent)
    pdb_object.image.combined.write(grid)
Exemplo n.º 5
0
 def __init__(self, model_object, dataset_object, channels, action, seed):
     self.dataset_object = dataset_object
     if not self.results.path.exists():
         self.results.write("")
     self.model_object = model_object
     self.channels = channels
     input_fn = input.load_fn(dataset_object, channels, settings.rotate,
                              action)
     self.iterator = input_fn().make_initializable_iterator()
     model_fn = model_object.load_fn()
     self.id, self.X, self.y = self.iterator.get_next()
     self.shape = tf.shape(self.y)[0]
     model = model_fn(self.X, self.y, action, settings.rotate)
     self.op = model.train_op
     self.loss = model.loss
     self.predictions = model.predictions
     checkpoint_folder = self.dataset_object.model(self.model_object,
                                                   self.channels, seed)
     storage.make_directory(checkpoint_folder)
     self.save_path = checkpoint_folder / "model.ckpt"
     self.saver = tf.train.Saver()