def create_system(options, full_system, system, dma_ports, ruby_system):
    if buildEnv['PROTOCOL'] != 'Garnet_standalone':
        panic("This script requires Garnet_standalone protocol to be built.")

    cpu_sequencers = []

    #
    # The Garnet_standalone protocol does not support fs nor dma
    #
    assert(dma_ports == [])

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.
    # Therefore the l1 controller nodes must be listed before
    # the directory nodes and directory nodes before dma nodes, etc.
    l1_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        # Only one cache exists for this protocol, so by default use the L1D
        # config parameters.
        #
        cache = L1Cache(size = options.l1d_size,
                        assoc = options.l1d_assoc)

        #
        # Only one unified L1 cache exists.  Can cache instructions and data.
        #
        l1_cntrl = L1Cache_Controller(version = i,
                                      cacheMemory = cache,
                                      ruby_system = ruby_system)

        cpu_seq = RubySequencer(icache = cache,
                                dcache = cache,
                                garnet_standalone = True,
                                ruby_system = ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromCache = MessageBuffer()
        l1_cntrl.responseFromCache = MessageBuffer()
        l1_cntrl.forwardFromCache = MessageBuffer()


    dir_cntrl_nodes = create_directories(options, system.mem_ranges,
                                         ruby_system)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.forwardToDir = MessageBuffer()
        dir_cntrl.responseToDir = MessageBuffer()


    all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes
    ruby_system.network.number_of_virtual_networks = 3
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, dir_cntrl_nodes, topology)
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MESI_Two_Level':
        fatal("This script requires the MESI_Two_Level protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    l2_bits = int(math.log(options.num_l2caches, 2))
    block_size_bits = int(math.log(options.cacheline_size, 2))

    ## yanan
    ## add protected_id for both L1 and L2 controller
    protected_id = options.protected_id

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size = options.l1i_size,
                            assoc = options.l1i_assoc,
                            start_index_bit = block_size_bits,
                            is_icache = True,
                            protected_id = protected_id)
        l1d_cache = L1Cache(size = options.l1d_size,
                            assoc = options.l1d_assoc,
                            start_index_bit = block_size_bits,
                            is_icache = False,
                            protected_id = protected_id)

        prefetcher = RubyPrefetcher.Prefetcher()

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version = i, L1Icache = l1i_cache,
                                      L1Dcache = l1d_cache,
                                      l2_select_num_bits = l2_bits,
                                      send_evictions = send_evicts(options),
                                      prefetcher = prefetcher,
                                      ruby_system = ruby_system,
                                      clk_domain = clk_domain,
                                      transitions_per_cycle = options.ports,
                                      enable_prefetch = False)

        cpu_seq = RubySequencer(version = i, icache = l1i_cache,
                                dcache = l1d_cache, clk_domain = clk_domain,
                                ruby_system = ruby_system)


        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromL1Cache = MessageBuffer()
        l1_cntrl.requestFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.responseFromL1Cache = MessageBuffer()
        l1_cntrl.responseFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.unblockFromL1Cache = MessageBuffer()
        l1_cntrl.unblockFromL1Cache.master = ruby_system.network.slave

        l1_cntrl.optionalQueue = MessageBuffer()

        l1_cntrl.requestToL1Cache = MessageBuffer()
        l1_cntrl.requestToL1Cache.slave = ruby_system.network.master
        l1_cntrl.responseToL1Cache = MessageBuffer()
        l1_cntrl.responseToL1Cache.slave = ruby_system.network.master
        ##yanan
        l1_cntrl.wbToL1Cache = MessageBuffer()
        l1_cntrl.wbToL1Cache.slave = ruby_system.network.master

    l2_index_start = block_size_bits + l2_bits

    for i in xrange(options.num_l2caches):
        #
        # First create the Ruby objects associated with this cpu
        #
        l2_cache = L2Cache(size = options.l2_size,
                           assoc = options.l2_assoc,
                           start_index_bit = l2_index_start,
                           protected_id = protected_id)

        l2_cachep = L2Cache(size = options.l2_size,
                           assoc = options.l2_assoc,
                           start_index_bit = l2_index_start,
                           protected_id = protected_id)
        l2_cntrl = L2Cache_Controller(version = i,
                                      L2cache = l2_cache,
                                      L2cachep = l2_cachep,
                                      transitions_per_cycle = options.ports,
                                      ruby_system = ruby_system)

        exec("ruby_system.l2_cntrl%d = l2_cntrl" % i)
        l2_cntrl_nodes.append(l2_cntrl)

        # Connect the L2 controllers and the network
        l2_cntrl.DirRequestFromL2Cache = MessageBuffer()
        l2_cntrl.DirRequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
        l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.responseFromL2Cache = MessageBuffer()
        l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave
        ##yanan
        l2_cntrl.wbFromL2Cache = MessageBuffer()
        l2_cntrl.wbFromL2Cache.master = ruby_system.network.slave

        l2_cntrl.unblockToL2Cache = MessageBuffer()
        l2_cntrl.unblockToL2Cache.slave = ruby_system.network.master
        l2_cntrl.L1RequestToL2Cache = MessageBuffer()
        l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.responseToL2Cache = MessageBuffer()
        l2_cntrl.responseToL2Cache.slave = ruby_system.network.master


    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
                                          clk_domain = ruby_system.clk_domain,
                                          clk_divider = 3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()


    for i, dma_port in enumerate(dma_ports):
        # Create the Ruby objects associated with the dma controller
        dma_seq = DMASequencer(version = i, ruby_system = ruby_system,
                               slave = dma_port)

        dma_cntrl = DMA_Controller(version = i, dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave

    all_cntrls = l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version = len(dma_ports),
                              ruby_system = ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer(ordered = True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 4
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 3
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MESI_Three_Level':
        fatal("This script requires the MESI_Three_Level protocol to be\
               built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes
    # must be listed before the directory nodes and directory nodes before
    # dma nodes, etc.
    #
    l0_cntrl_nodes = []
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    assert (options.num_cpus % options.num_clusters == 0)
    num_cpus_per_cluster = options.num_cpus / options.num_clusters

    assert (options.num_l2caches % options.num_clusters == 0)
    num_l2caches_per_cluster = options.num_l2caches / options.num_clusters

    l2_bits = int(math.log(num_l2caches_per_cluster, 2))
    block_size_bits = int(math.log(options.cacheline_size, 2))
    l2_index_start = block_size_bits + l2_bits

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    for i in xrange(options.num_clusters):
        for j in xrange(num_cpus_per_cluster):
            #
            # First create the Ruby objects associated with this cpu
            #
            l0i_cache = L0Cache(size = '4096B', assoc = 1, is_icache = True,
                start_index_bit = block_size_bits,
                replacement_policy = LRUReplacementPolicy())

            l0d_cache = L0Cache(size = '4096B', assoc = 1, is_icache = False,
                start_index_bit = block_size_bits,
                replacement_policy = LRUReplacementPolicy())

            # the ruby random tester reuses num_cpus to specify the
            # number of cpu ports connected to the tester object, which
            # is stored in system.cpu. because there is only ever one
            # tester object, num_cpus is not necessarily equal to the
            # size of system.cpu; therefore if len(system.cpu) == 1
            # we use system.cpu[0] to set the clk_domain, thereby ensuring
            # we don't index off the end of the cpu list.
            if len(system.cpu) == 1:
                clk_domain = system.cpu[0].clk_domain
            else:
                clk_domain = system.cpu[i].clk_domain

            l0_cntrl = L0Cache_Controller(
                   version = i * num_cpus_per_cluster + j, Icache = l0i_cache,
                   Dcache = l0d_cache, send_evictions = send_evicts(options),
                   clk_domain = clk_domain, ruby_system = ruby_system)

            cpu_seq = RubySequencer(version = i * num_cpus_per_cluster + j,
                                    icache = l0i_cache,
                                    clk_domain = clk_domain,
                                    dcache = l0d_cache,
                                    ruby_system = ruby_system)

            l0_cntrl.sequencer = cpu_seq

            l1_cache = L1Cache(size = options.l1d_size,
                               assoc = options.l1d_assoc,
                               start_index_bit = block_size_bits,
                               is_icache = False)

            l1_cntrl = L1Cache_Controller(
                    version = i * num_cpus_per_cluster + j,
                    cache = l1_cache, l2_select_num_bits = l2_bits,
                    cluster_id = i, ruby_system = ruby_system)

            exec("ruby_system.l0_cntrl%d = l0_cntrl"
                 % ( i * num_cpus_per_cluster + j))
            exec("ruby_system.l1_cntrl%d = l1_cntrl"
                 % ( i * num_cpus_per_cluster + j))

            #
            # Add controllers and sequencers to the appropriate lists
            #
            cpu_sequencers.append(cpu_seq)
            l0_cntrl_nodes.append(l0_cntrl)
            l1_cntrl_nodes.append(l1_cntrl)

            # Connect the L0 and L1 controllers
            l0_cntrl.mandatoryQueue = MessageBuffer()
            l0_cntrl.bufferToL1 = MessageBuffer(ordered = True)
            l1_cntrl.bufferFromL0 = l0_cntrl.bufferToL1
            l0_cntrl.bufferFromL1 = MessageBuffer(ordered = True)
            l1_cntrl.bufferToL0 = l0_cntrl.bufferFromL1

            # Connect the L1 controllers and the network
            l1_cntrl.requestToL2 = MessageBuffer()
            l1_cntrl.requestToL2.master = ruby_system.network.slave
            l1_cntrl.responseToL2 = MessageBuffer()
            l1_cntrl.responseToL2.master = ruby_system.network.slave
            l1_cntrl.unblockToL2 = MessageBuffer()
            l1_cntrl.unblockToL2.master = ruby_system.network.slave

            l1_cntrl.requestFromL2 = MessageBuffer()
            l1_cntrl.requestFromL2.slave = ruby_system.network.master
            l1_cntrl.responseFromL2 = MessageBuffer()
            l1_cntrl.responseFromL2.slave = ruby_system.network.master


        for j in xrange(num_l2caches_per_cluster):
            l2_cache = L2Cache(size = options.l2_size,
                               assoc = options.l2_assoc,
                               start_index_bit = l2_index_start)

            l2_cntrl = L2Cache_Controller(
                        version = i * num_l2caches_per_cluster + j,
                        L2cache = l2_cache, cluster_id = i,
                        transitions_per_cycle = options.ports,
                        ruby_system = ruby_system)

            exec("ruby_system.l2_cntrl%d = l2_cntrl"
                 % (i * num_l2caches_per_cluster + j))
            l2_cntrl_nodes.append(l2_cntrl)

            # Connect the L2 controllers and the network
            l2_cntrl.DirRequestFromL2Cache = MessageBuffer()
            l2_cntrl.DirRequestFromL2Cache.master = ruby_system.network.slave
            l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
            l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
            l2_cntrl.responseFromL2Cache = MessageBuffer()
            l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

            l2_cntrl.unblockToL2Cache = MessageBuffer()
            l2_cntrl.unblockToL2Cache.slave = ruby_system.network.master
            l2_cntrl.L1RequestToL2Cache = MessageBuffer()
            l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
            l2_cntrl.responseToL2Cache = MessageBuffer()
            l2_cntrl.responseToL2Cache.slave = ruby_system.network.master

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
            clk_domain = ruby_system.clk_domain, clk_divider = 3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version = i, ruby_system = ruby_system)

        dma_cntrl = DMA_Controller(version = i,
                                   dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave

    all_cntrls = l0_cntrl_nodes + \
                 l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer(ordered = True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 3
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 4
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_hammer':
        panic("This script requires the MOESI_hammer protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in range(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size=options.l1i_size,
                            assoc=options.l1i_assoc,
                            start_index_bit=block_size_bits,
                            is_icache=True)
        l1d_cache = L1Cache(size=options.l1d_size,
                            assoc=options.l1d_assoc,
                            start_index_bit=block_size_bits)
        l2_cache = L2Cache(size=options.l2_size,
                           assoc=options.l2_assoc,
                           start_index_bit=block_size_bits)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i, L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache, L2cache=l2_cache,
                                      no_mig_atomic=not \
                                      options.allow_atomic_migration,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i,
                                icache=l1i_cache,
                                dcache=l1d_cache,
                                clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        if options.recycle_latency:
            l1_cntrl.recycle_latency = options.recycle_latency

        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controller and the network
        # Connect the buffers from the controller to network
        l1_cntrl.requestFromCache = MessageBuffer()
        l1_cntrl.requestFromCache.master = ruby_system.network.slave
        l1_cntrl.responseFromCache = MessageBuffer()
        l1_cntrl.responseFromCache.master = ruby_system.network.slave
        l1_cntrl.unblockFromCache = MessageBuffer()
        l1_cntrl.unblockFromCache.master = ruby_system.network.slave

        l1_cntrl.triggerQueue = MessageBuffer()

        # Connect the buffers from the network to the controller
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.forwardToCache = MessageBuffer()
        l1_cntrl.forwardToCache.slave = ruby_system.network.master
        l1_cntrl.responseToCache = MessageBuffer()
        l1_cntrl.responseToCache.slave = ruby_system.network.master

    #
    # determine size and index bits for probe filter
    # By default, the probe filter size is configured to be twice the
    # size of the L2 cache.
    #
    pf_size = MemorySize(options.l2_size)
    pf_size.value = pf_size.value * 2
    dir_bits = int(math.log(options.num_dirs, 2))
    pf_bits = int(math.log(pf_size.value, 2))
    if options.numa_high_bit:
        if options.pf_on or options.dir_on:
            # if numa high bit explicitly set, make sure it does not overlap
            # with the probe filter index
            assert (options.numa_high_bit - dir_bits > pf_bits)

        # set the probe filter start bit to just above the block offset
        pf_start_bit = block_size_bits
    else:
        if dir_bits > 0:
            pf_start_bit = dir_bits + block_size_bits - 1
        else:
            pf_start_bit = block_size_bits

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
        clk_domain=ruby_system.clk_domain, clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        pf = ProbeFilter(size=pf_size, assoc=4, start_index_bit=pf_start_bit)

        dir_cntrl.probeFilter = pf
        dir_cntrl.probe_filter_enabled = options.pf_on
        dir_cntrl.full_bit_dir_enabled = options.dir_on

        if options.recycle_latency:
            dir_cntrl.recycle_latency = options.recycle_latency

        # Connect the directory controller to the network
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave

        dir_cntrl.triggerQueue = MessageBuffer(ordered=True)

        dir_cntrl.unblockToDir = MessageBuffer()
        dir_cntrl.unblockToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version=i,
                               ruby_system=ruby_system,
                               slave=dma_port)

        dma_cntrl = DMA_Controller(version=i,
                                   dma_sequencer=dma_seq,
                                   transitions_per_cycle=options.ports,
                                   ruby_system=ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        if options.recycle_latency:
            dma_cntrl.recycle_latency = options.recycle_latency

        # Connect the dma controller to the network
        dma_cntrl.responseFromDir = MessageBuffer(ordered=True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave
        dma_cntrl.mandatoryQueue = MessageBuffer()

    all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version=len(dma_ports),
                                       dma_sequencer=io_seq,
                                       ruby_system=ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.responseFromDir = MessageBuffer(ordered=True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave
        io_controller.mandatoryQueue = MessageBuffer()

        all_cntrls = all_cntrls + [io_controller]
    # Register configuration with filesystem
    else:
        FileSystemConfig.config_filesystem(options)

        for i in xrange(options.num_cpus):
            FileSystemConfig.register_cpu(physical_package_id=0,
                                          core_siblings=[],
                                          core_id=i,
                                          thread_siblings=[])

            FileSystemConfig.register_cache(level=1,
                                            idu_type='Instruction',
                                            size=options.l1i_size,
                                            line_size=options.cacheline_size,
                                            assoc=options.l1i_assoc,
                                            cpus=[i])
            FileSystemConfig.register_cache(level=1,
                                            idu_type='Data',
                                            size=options.l1d_size,
                                            line_size=options.cacheline_size,
                                            assoc=options.l1d_assoc,
                                            cpus=[i])

            FileSystemConfig.register_cache(level=2,
                                            idu_type='Unified',
                                            size=options.l2_size,
                                            line_size=options.cacheline_size,
                                            assoc=options.l2_assoc,
                                            cpus=[i])

    ruby_system.network.number_of_virtual_networks = 6
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 5
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MI_example':
        panic("This script requires the MI_example protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        # Only one cache exists for this protocol, so by default use the L1D
        # config parameters.
        #
        cache = L1Cache(size=options.l1d_size,
                        assoc=options.l1d_assoc,
                        start_index_bit=block_size_bits)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        # Only one unified L1 cache exists. Can cache instructions and data.
        l1_cntrl = L1Cache_Controller(version=i,
                                      cacheMemory=cache,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i,
                                icache=cache,
                                dcache=cache,
                                clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromCache = MessageBuffer(ordered=True)
        l1_cntrl.requestFromCache.master = ruby_system.network.slave
        l1_cntrl.responseFromCache = MessageBuffer(ordered=True)
        l1_cntrl.responseFromCache.master = ruby_system.network.slave
        l1_cntrl.forwardToCache = MessageBuffer(ordered=True)
        l1_cntrl.forwardToCache.slave = ruby_system.network.master
        l1_cntrl.responseToCache = MessageBuffer(ordered=True)
        l1_cntrl.responseToCache.slave = ruby_system.network.master

    phys_mem_size = sum(map(lambda r: r.size(), system.mem_ranges))
    assert (phys_mem_size % options.num_dirs == 0)
    mem_module_size = phys_mem_size / options.num_dirs

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system.
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
        clk_domain=ruby_system.clk_domain, clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, system.mem_ranges, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer(ordered=True)
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master

        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version=i, ruby_system=ruby_system)

        dma_cntrl = DMA_Controller(version=i,
                                   dma_sequencer=dma_seq,
                                   transitions_per_cycle=options.ports,
                                   ruby_system=ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the directory controllers and the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave
        dma_cntrl.responseFromDir = MessageBuffer(ordered=True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master

    all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version=len(dma_ports),
                                       dma_sequencer=io_seq,
                                       ruby_system=ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave
        io_controller.responseFromDir = MessageBuffer(ordered=True)
        io_controller.responseFromDir.slave = ruby_system.network.master

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 5
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 6
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MESI_Three_Level':
        fatal("This script requires the MESI_Three_Level protocol to be\
               built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes
    # must be listed before the directory nodes and directory nodes before
    # dma nodes, etc.
    #
    l0_cntrl_nodes = []
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    assert (options.num_cpus % options.num_clusters == 0)
    num_cpus_per_cluster = options.num_cpus / options.num_clusters

    assert (options.num_l2caches % options.num_clusters == 0)
    num_l2caches_per_cluster = options.num_l2caches / options.num_clusters

    l2_bits = int(math.log(num_l2caches_per_cluster, 2))
    block_size_bits = int(math.log(options.cacheline_size, 2))
    l2_index_start = block_size_bits + l2_bits

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    for i in range(options.num_clusters):
        for j in range(num_cpus_per_cluster):
            #
            # First create the Ruby objects associated with this cpu
            #
            l0i_cache = L0Cache(size='4096B',
                                assoc=1,
                                is_icache=True,
                                start_index_bit=block_size_bits,
                                replacement_policy=LRUReplacementPolicy())

            l0d_cache = L0Cache(size='4096B',
                                assoc=1,
                                is_icache=False,
                                start_index_bit=block_size_bits,
                                replacement_policy=LRUReplacementPolicy())

            # the ruby random tester reuses num_cpus to specify the
            # number of cpu ports connected to the tester object, which
            # is stored in system.cpu. because there is only ever one
            # tester object, num_cpus is not necessarily equal to the
            # size of system.cpu; therefore if len(system.cpu) == 1
            # we use system.cpu[0] to set the clk_domain, thereby ensuring
            # we don't index off the end of the cpu list.
            if len(system.cpu) == 1:
                clk_domain = system.cpu[0].clk_domain
            else:
                clk_domain = system.cpu[i].clk_domain

            l0_cntrl = L0Cache_Controller(version=i * num_cpus_per_cluster + j,
                                          Icache=l0i_cache,
                                          Dcache=l0d_cache,
                                          send_evictions=send_evicts(options),
                                          clk_domain=clk_domain,
                                          ruby_system=ruby_system)

            cpu_seq = RubySequencer(version=i * num_cpus_per_cluster + j,
                                    icache=l0i_cache,
                                    clk_domain=clk_domain,
                                    dcache=l0d_cache,
                                    ruby_system=ruby_system)

            l0_cntrl.sequencer = cpu_seq

            l1_cache = L1Cache(size=options.l1d_size,
                               assoc=options.l1d_assoc,
                               start_index_bit=block_size_bits,
                               is_icache=False)

            l1_cntrl = L1Cache_Controller(version=i * num_cpus_per_cluster + j,
                                          cache=l1_cache,
                                          l2_select_num_bits=l2_bits,
                                          cluster_id=i,
                                          ruby_system=ruby_system)

            exec("ruby_system.l0_cntrl%d = l0_cntrl" %
                 (i * num_cpus_per_cluster + j))
            exec("ruby_system.l1_cntrl%d = l1_cntrl" %
                 (i * num_cpus_per_cluster + j))

            #
            # Add controllers and sequencers to the appropriate lists
            #
            cpu_sequencers.append(cpu_seq)
            l0_cntrl_nodes.append(l0_cntrl)
            l1_cntrl_nodes.append(l1_cntrl)

            # Connect the L0 and L1 controllers
            l0_cntrl.mandatoryQueue = MessageBuffer()
            l0_cntrl.bufferToL1 = MessageBuffer(ordered=True)
            l1_cntrl.bufferFromL0 = l0_cntrl.bufferToL1
            l0_cntrl.bufferFromL1 = MessageBuffer(ordered=True)
            l1_cntrl.bufferToL0 = l0_cntrl.bufferFromL1

            # Connect the L1 controllers and the network
            l1_cntrl.requestToL2 = MessageBuffer()
            l1_cntrl.requestToL2.master = ruby_system.network.slave
            l1_cntrl.responseToL2 = MessageBuffer()
            l1_cntrl.responseToL2.master = ruby_system.network.slave
            l1_cntrl.unblockToL2 = MessageBuffer()
            l1_cntrl.unblockToL2.master = ruby_system.network.slave

            l1_cntrl.requestFromL2 = MessageBuffer()
            l1_cntrl.requestFromL2.slave = ruby_system.network.master
            l1_cntrl.responseFromL2 = MessageBuffer()
            l1_cntrl.responseFromL2.slave = ruby_system.network.master

        for j in range(num_l2caches_per_cluster):
            l2_cache = L2Cache(size=options.l2_size,
                               assoc=options.l2_assoc,
                               start_index_bit=l2_index_start)

            l2_cntrl = L2Cache_Controller(
                version=i * num_l2caches_per_cluster + j,
                L2cache=l2_cache,
                cluster_id=i,
                transitions_per_cycle=options.ports,
                ruby_system=ruby_system)

            exec("ruby_system.l2_cntrl%d = l2_cntrl" %
                 (i * num_l2caches_per_cluster + j))
            l2_cntrl_nodes.append(l2_cntrl)

            # Connect the L2 controllers and the network
            l2_cntrl.DirRequestFromL2Cache = MessageBuffer()
            l2_cntrl.DirRequestFromL2Cache.master = ruby_system.network.slave
            l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
            l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
            l2_cntrl.responseFromL2Cache = MessageBuffer()
            l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

            l2_cntrl.unblockToL2Cache = MessageBuffer()
            l2_cntrl.unblockToL2Cache.slave = ruby_system.network.master
            l2_cntrl.L1RequestToL2Cache = MessageBuffer()
            l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
            l2_cntrl.responseToL2Cache = MessageBuffer()
            l2_cntrl.responseToL2Cache.slave = ruby_system.network.master

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
        clk_domain=ruby_system.clk_domain, clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version=i, ruby_system=ruby_system)

        dma_cntrl = DMA_Controller(version=i,
                                   dma_sequencer=dma_seq,
                                   transitions_per_cycle=options.ports,
                                   ruby_system=ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer(ordered=True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave

    all_cntrls = l0_cntrl_nodes + \
                 l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version=len(dma_ports),
                                       dma_sequencer=io_seq,
                                       ruby_system=ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer(ordered=True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave

        all_cntrls = all_cntrls + [io_controller]
    # Register configuration with filesystem
    else:
        FileSystemConfig.config_filesystem(options)

        for i in xrange(options.num_clusters):
            for j in xrange(num_cpus_per_cluster):
                FileSystemConfig.register_cpu(
                    physical_package_id=0,
                    core_siblings=xrange(options.num_cpus),
                    core_id=i * num_cpus_per_cluster + j,
                    thread_siblings=[])

                FileSystemConfig.register_cache(
                    level=0,
                    idu_type='Instruction',
                    size='4096B',
                    line_size=options.cacheline_size,
                    assoc=1,
                    cpus=[i * num_cpus_per_cluster + j])
                FileSystemConfig.register_cache(
                    level=0,
                    idu_type='Data',
                    size='4096B',
                    line_size=options.cacheline_size,
                    assoc=1,
                    cpus=[i * num_cpus_per_cluster + j])

                FileSystemConfig.register_cache(
                    level=1,
                    idu_type='Unified',
                    size=options.l1d_size,
                    line_size=options.cacheline_size,
                    assoc=options.l1d_assoc,
                    cpus=[i * num_cpus_per_cluster + j])

            FileSystemConfig.register_cache(level = 2,
                                            idu_type = 'Unified',
                                            size = str(MemorySize(options.l2_size) * \
                                                   num_l2caches_per_cluster)+'B',
                                            line_size = options.cacheline_size,
                                            assoc = options.l2_assoc,
                                            cpus = [n for n in xrange(i*num_cpus_per_cluster, \
                                                                     (i+1)*num_cpus_per_cluster)])

    ruby_system.network.number_of_virtual_networks = 3
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 7
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_CMP_token':
        panic("This script requires the MOESI_CMP_token protocol to be built.")

    #
    # number of tokens that the owner passes to requests so that shared blocks can
    # respond to read requests
    #
    n_tokens = options.num_cpus + 1

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    l2_bits = int(math.log(options.num_l2caches, 2))
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size = options.l1i_size,
                            assoc = options.l1i_assoc,
                            start_index_bit = block_size_bits)
        l1d_cache = L1Cache(size = options.l1d_size,
                            assoc = options.l1d_assoc,
                            start_index_bit = block_size_bits)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i, L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache,
                                      l2_select_num_bits=l2_bits,
                                      N_tokens=n_tokens,
                                      retry_threshold=options.l1_retries,
                                      fixed_timeout_latency=\
                                      options.timeout_latency,
                                      dynamic_timeout_enabled=\
                                      not options.disable_dyn_timeouts,
                                      no_mig_atomic=not \
                                      options.allow_atomic_migration,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i, icache=l1i_cache,
                                dcache=l1d_cache, clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.requestFromL1Cache = MessageBuffer()
        l1_cntrl.requestFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.responseFromL1Cache = MessageBuffer()
        l1_cntrl.responseFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.persistentFromL1Cache = MessageBuffer(ordered = True)
        l1_cntrl.persistentFromL1Cache.master = ruby_system.network.slave

        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestToL1Cache = MessageBuffer()
        l1_cntrl.requestToL1Cache.slave = ruby_system.network.master
        l1_cntrl.responseToL1Cache = MessageBuffer()
        l1_cntrl.responseToL1Cache.slave = ruby_system.network.master
        l1_cntrl.persistentToL1Cache = MessageBuffer(ordered = True)
        l1_cntrl.persistentToL1Cache.slave = ruby_system.network.master


    l2_index_start = block_size_bits + l2_bits

    for i in xrange(options.num_l2caches):
        #
        # First create the Ruby objects associated with this cpu
        #
        l2_cache = L2Cache(size = options.l2_size,
                           assoc = options.l2_assoc,
                           start_index_bit = l2_index_start)

        l2_cntrl = L2Cache_Controller(version = i,
                                      L2cache = l2_cache,
                                      N_tokens = n_tokens,
                                      transitions_per_cycle = options.ports,
                                      ruby_system = ruby_system)

        exec("ruby_system.l2_cntrl%d = l2_cntrl" % i)
        l2_cntrl_nodes.append(l2_cntrl)

        # Connect the L2 controllers and the network
        l2_cntrl.GlobalRequestFromL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
        l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.responseFromL2Cache = MessageBuffer()
        l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

        l2_cntrl.GlobalRequestToL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.L1RequestToL2Cache = MessageBuffer()
        l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.responseToL2Cache = MessageBuffer()
        l2_cntrl.responseToL2Cache.slave = ruby_system.network.master
        l2_cntrl.persistentToL2Cache = MessageBuffer(ordered = True)
        l2_cntrl.persistentToL2Cache.slave = ruby_system.network.master


    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
                                          clk_domain=ruby_system.clk_domain,
                                          clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        dir_cntrl.l2_select_num_bits = l2_bits
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.persistentToDir = MessageBuffer(ordered = True)
        dir_cntrl.persistentToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master

        dir_cntrl.requestFromDir = MessageBuffer()
        dir_cntrl.requestFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.persistentFromDir = MessageBuffer(ordered = True)
        dir_cntrl.persistentFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()


    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version = i,
                               ruby_system = ruby_system,
                               slave = dma_port)

        dma_cntrl = DMA_Controller(version = i,
                                   dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.reqToDirectory = MessageBuffer()
        dma_cntrl.reqToDirectory.master = ruby_system.network.slave

    all_cntrls = l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer(ordered = True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.reqToDirectory = MessageBuffer()
        io_controller.reqToDirectory.master = ruby_system.network.slave

        all_cntrls = all_cntrls + [io_controller]


    ruby_system.network.number_of_virtual_networks = 6
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 8
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_hammer':
        panic("This script requires the MOESI_hammer protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in range(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size = options.l1i_size,
                            assoc = options.l1i_assoc,
                            start_index_bit = block_size_bits,
                            is_icache = True)
        l1d_cache = L1Cache(size = options.l1d_size,
                            assoc = options.l1d_assoc,
                            start_index_bit = block_size_bits)
        l2_cache = L2Cache(size = options.l2_size,
                           assoc = options.l2_assoc,
                           start_index_bit = block_size_bits)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i, L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache, L2cache=l2_cache,
                                      no_mig_atomic=not \
                                      options.allow_atomic_migration,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i, icache=l1i_cache,
                                dcache=l1d_cache,clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        if options.recycle_latency:
            l1_cntrl.recycle_latency = options.recycle_latency

        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controller and the network
        # Connect the buffers from the controller to network
        l1_cntrl.requestFromCache = MessageBuffer()
        l1_cntrl.requestFromCache.master = ruby_system.network.slave
        l1_cntrl.responseFromCache = MessageBuffer()
        l1_cntrl.responseFromCache.master = ruby_system.network.slave
        l1_cntrl.unblockFromCache = MessageBuffer()
        l1_cntrl.unblockFromCache.master = ruby_system.network.slave

        l1_cntrl.triggerQueue = MessageBuffer()

        # Connect the buffers from the network to the controller
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.forwardToCache = MessageBuffer()
        l1_cntrl.forwardToCache.slave = ruby_system.network.master
        l1_cntrl.responseToCache = MessageBuffer()
        l1_cntrl.responseToCache.slave = ruby_system.network.master


    #
    # determine size and index bits for probe filter
    # By default, the probe filter size is configured to be twice the
    # size of the L2 cache.
    #
    pf_size = MemorySize(options.l2_size)
    pf_size.value = pf_size.value * 2
    dir_bits = int(math.log(options.num_dirs, 2))
    pf_bits = int(math.log(pf_size.value, 2))
    if options.numa_high_bit:
        if options.pf_on or options.dir_on:
            # if numa high bit explicitly set, make sure it does not overlap
            # with the probe filter index
            assert(options.numa_high_bit - dir_bits > pf_bits)

        # set the probe filter start bit to just above the block offset
        pf_start_bit = block_size_bits
    else:
        if dir_bits > 0:
            pf_start_bit = dir_bits + block_size_bits - 1
        else:
            pf_start_bit = block_size_bits

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
                                          clk_domain=ruby_system.clk_domain,
                                          clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        pf = ProbeFilter(size = pf_size, assoc = 4,
                         start_index_bit = pf_start_bit)

        dir_cntrl.probeFilter = pf
        dir_cntrl.probe_filter_enabled = options.pf_on
        dir_cntrl.full_bit_dir_enabled = options.dir_on

        if options.recycle_latency:
            dir_cntrl.recycle_latency = options.recycle_latency

        # Connect the directory controller to the network
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave

        dir_cntrl.triggerQueue = MessageBuffer(ordered = True)

        dir_cntrl.unblockToDir = MessageBuffer()
        dir_cntrl.unblockToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromMemory = MessageBuffer()


    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version = i,
                               ruby_system = ruby_system,
                               slave = dma_port)

        dma_cntrl = DMA_Controller(version = i,
                                   dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        if options.recycle_latency:
            dma_cntrl.recycle_latency = options.recycle_latency

        # Connect the dma controller to the network
        dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave
        dma_cntrl.mandatoryQueue = MessageBuffer()

    all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.responseFromDir = MessageBuffer(ordered = True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave
        io_controller.mandatoryQueue = MessageBuffer()

        all_cntrls = all_cntrls + [io_controller]
    # Register configuration with filesystem
    else:
        FileSystemConfig.config_filesystem(options)

        for i in xrange(options.num_cpus):
            FileSystemConfig.register_cpu(physical_package_id = 0,
                                          core_siblings = [],
                                          core_id = i,
                                          thread_siblings = [])

            FileSystemConfig.register_cache(level = 1,
                                            idu_type = 'Instruction',
                                            size = options.l1i_size,
                                            line_size = options.cacheline_size,
                                            assoc = options.l1i_assoc,
                                            cpus = [i])
            FileSystemConfig.register_cache(level = 1,
                                            idu_type = 'Data',
                                            size = options.l1d_size,
                                            line_size = options.cacheline_size,
                                            assoc = options.l1d_assoc,
                                            cpus = [i])

            FileSystemConfig.register_cache(level = 2,
                                            idu_type = 'Unified',
                                            size = options.l2_size,
                                            line_size = options.cacheline_size,
                                            assoc = options.l2_assoc,
                                            cpus = [i])

    ruby_system.network.number_of_virtual_networks = 6
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 9
0
def create_system(options, full_system, system, dma_ports, ruby_system):

    if buildEnv['PROTOCOL'] != 'MI_example':
        panic("This script requires the MI_example protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        # Only one cache exists for this protocol, so by default use the L1D
        # config parameters.
        #
        cache = L1Cache(size = options.l1d_size,
                        assoc = options.l1d_assoc,
                        start_index_bit = block_size_bits)


        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        # Only one unified L1 cache exists. Can cache instructions and data.
        l1_cntrl = L1Cache_Controller(version=i, cacheMemory=cache,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i, icache=cache, dcache=cache,
                                clk_domain=clk_domain, ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromCache = MessageBuffer(ordered = True)
        l1_cntrl.requestFromCache.master = ruby_system.network.slave
        l1_cntrl.responseFromCache = MessageBuffer(ordered = True)
        l1_cntrl.responseFromCache.master = ruby_system.network.slave
        l1_cntrl.forwardToCache = MessageBuffer(ordered = True)
        l1_cntrl.forwardToCache.slave = ruby_system.network.master
        l1_cntrl.responseToCache = MessageBuffer(ordered = True)
        l1_cntrl.responseToCache.slave = ruby_system.network.master

    phys_mem_size = sum(map(lambda r: r.size(), system.mem_ranges))
    assert(phys_mem_size % options.num_dirs == 0)
    mem_module_size = phys_mem_size / options.num_dirs

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system.
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
                                          clk_domain=ruby_system.clk_domain,
                                          clk_divider=3)

    dir_cntrl_nodes = create_directories(options, system.mem_ranges,
                                         ruby_system)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer(ordered = True)
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master

        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered = True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()


    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version = i,
                               ruby_system = ruby_system)

        dma_cntrl = DMA_Controller(version = i,
                                   dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the directory controllers and the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.requestToDir = MessageBuffer()
        dma_cntrl.requestToDir.master = ruby_system.network.slave
        dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master

    all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.requestToDir = MessageBuffer()
        io_controller.requestToDir.master = ruby_system.network.slave
        io_controller.responseFromDir = MessageBuffer(ordered = True)
        io_controller.responseFromDir.slave = ruby_system.network.master

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 5
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, dir_cntrl_nodes, topology)
Exemplo n.º 10
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_CMP_directory':
        panic("This script requires the MOESI_CMP_directory protocol to be built.")

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in range(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size = options.l1i_size,
                            assoc = options.l1i_assoc,
                            start_index_bit = block_size_bits,
                            is_icache = True)
        l1d_cache = L1Cache(size = options.l1d_size,
                            assoc = options.l1d_assoc,
                            start_index_bit = block_size_bits,
                            is_icache = False)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i, L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i, icache=l1i_cache,
                                dcache=l1d_cache, clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromL1Cache = MessageBuffer()
        l1_cntrl.requestFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.responseFromL1Cache = MessageBuffer()
        l1_cntrl.responseFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.requestToL1Cache = MessageBuffer()
        l1_cntrl.requestToL1Cache.slave = ruby_system.network.master
        l1_cntrl.responseToL1Cache = MessageBuffer()
        l1_cntrl.responseToL1Cache.slave = ruby_system.network.master
        l1_cntrl.triggerQueue = MessageBuffer(ordered = True)


    # Create the L2s interleaved addr ranges
    l2_addr_ranges = []
    l2_bits = int(math.log(options.num_l2caches, 2))
    numa_bit = block_size_bits + l2_bits - 1
    sysranges = [] + system.mem_ranges
    if bootmem: sysranges.append(bootmem.range)
    for i in range(options.num_l2caches):
        ranges = []
        for r in sysranges:
            addr_range = AddrRange(r.start, size = r.size(),
                                    intlvHighBit = numa_bit,
                                    intlvBits = l2_bits,
                                    intlvMatch = i)
            ranges.append(addr_range)
        l2_addr_ranges.append(ranges)

    for i in range(options.num_l2caches):
        #
        # First create the Ruby objects associated with this cpu
        #
        l2_cache = L2Cache(size = options.l2_size,
                           assoc = options.l2_assoc,
                           start_index_bit = block_size_bits + l2_bits)

        l2_cntrl = L2Cache_Controller(version = i,
                                      L2cache = l2_cache,
                                      transitions_per_cycle = options.ports,
                                      ruby_system = ruby_system,
                                      addr_ranges = l2_addr_ranges[i])

        exec("ruby_system.l2_cntrl%d = l2_cntrl" % i)
        l2_cntrl_nodes.append(l2_cntrl)

        # Connect the L2 controllers and the network
        l2_cntrl.GlobalRequestFromL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
        l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.responseFromL2Cache = MessageBuffer()
        l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

        l2_cntrl.GlobalRequestToL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.L1RequestToL2Cache = MessageBuffer()
        l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.responseToL2Cache = MessageBuffer()
        l2_cntrl.responseToL2Cache.slave = ruby_system.network.master
        l2_cntrl.triggerQueue = MessageBuffer(ordered = True)

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system.
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
                                          clk_domain=ruby_system.clk_domain,
                                          clk_divider=3)


    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()


    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version = i,
                               ruby_system = ruby_system,
                               slave = dma_port)

        dma_cntrl = DMA_Controller(version = i,
                                   dma_sequencer = dma_seq,
                                   transitions_per_cycle = options.ports,
                                   ruby_system = ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer()
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.reqToDir = MessageBuffer()
        dma_cntrl.reqToDir.master = ruby_system.network.slave
        dma_cntrl.respToDir = MessageBuffer()
        dma_cntrl.respToDir.master = ruby_system.network.slave
        dma_cntrl.triggerQueue = MessageBuffer(ordered = True)


    all_cntrls = l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version = len(dma_ports),
                                       dma_sequencer = io_seq,
                                       ruby_system = ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer()
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.reqToDir = MessageBuffer()
        io_controller.reqToDir.master = ruby_system.network.slave
        io_controller.respToDir = MessageBuffer()
        io_controller.respToDir.master = ruby_system.network.slave
        io_controller.triggerQueue = MessageBuffer(ordered = True)

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 3
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
Exemplo n.º 11
0
def create_system(options, full_system, system, dma_ports, ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_CMP_token':
        panic("This script requires the MOESI_CMP_token protocol to be built.")

    #
    # number of tokens that the owner passes to requests so that shared blocks can
    # respond to read requests
    #
    n_tokens = options.num_cpus + 1

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    l2_bits = int(math.log(options.num_l2caches, 2))
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in xrange(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size=options.l1i_size,
                            assoc=options.l1i_assoc,
                            start_index_bit=block_size_bits)
        l1d_cache = L1Cache(size=options.l1d_size,
                            assoc=options.l1d_assoc,
                            start_index_bit=block_size_bits)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i, L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache,
                                      l2_select_num_bits=l2_bits,
                                      N_tokens=n_tokens,
                                      retry_threshold=options.l1_retries,
                                      fixed_timeout_latency=\
                                      options.timeout_latency,
                                      dynamic_timeout_enabled=\
                                      not options.disable_dyn_timeouts,
                                      no_mig_atomic=not \
                                      options.allow_atomic_migration,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i,
                                icache=l1i_cache,
                                dcache=l1d_cache,
                                clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.requestFromL1Cache = MessageBuffer()
        l1_cntrl.requestFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.responseFromL1Cache = MessageBuffer()
        l1_cntrl.responseFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.persistentFromL1Cache = MessageBuffer(ordered=True)
        l1_cntrl.persistentFromL1Cache.master = ruby_system.network.slave

        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestToL1Cache = MessageBuffer()
        l1_cntrl.requestToL1Cache.slave = ruby_system.network.master
        l1_cntrl.responseToL1Cache = MessageBuffer()
        l1_cntrl.responseToL1Cache.slave = ruby_system.network.master
        l1_cntrl.persistentToL1Cache = MessageBuffer(ordered=True)
        l1_cntrl.persistentToL1Cache.slave = ruby_system.network.master

    l2_index_start = block_size_bits + l2_bits

    for i in xrange(options.num_l2caches):
        #
        # First create the Ruby objects associated with this cpu
        #
        l2_cache = L2Cache(size=options.l2_size,
                           assoc=options.l2_assoc,
                           start_index_bit=l2_index_start)

        l2_cntrl = L2Cache_Controller(version=i,
                                      L2cache=l2_cache,
                                      N_tokens=n_tokens,
                                      transitions_per_cycle=options.ports,
                                      ruby_system=ruby_system)

        exec("ruby_system.l2_cntrl%d = l2_cntrl" % i)
        l2_cntrl_nodes.append(l2_cntrl)

        # Connect the L2 controllers and the network
        l2_cntrl.GlobalRequestFromL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
        l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.responseFromL2Cache = MessageBuffer()
        l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

        l2_cntrl.GlobalRequestToL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.L1RequestToL2Cache = MessageBuffer()
        l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.responseToL2Cache = MessageBuffer()
        l2_cntrl.responseToL2Cache.slave = ruby_system.network.master
        l2_cntrl.persistentToL2Cache = MessageBuffer(ordered=True)
        l2_cntrl.persistentToL2Cache.slave = ruby_system.network.master

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
        clk_domain=ruby_system.clk_domain, clk_divider=3)

    dir_cntrl_nodes = create_directories(options, system.mem_ranges,
                                         ruby_system)
    for dir_cntrl in dir_cntrl_nodes:
        dir_cntrl.l2_select_num_bits = l2_bits
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.persistentToDir = MessageBuffer(ordered=True)
        dir_cntrl.persistentToDir.slave = ruby_system.network.master
        dir_cntrl.dmaRequestToDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master

        dir_cntrl.requestFromDir = MessageBuffer()
        dir_cntrl.requestFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.persistentFromDir = MessageBuffer(ordered=True)
        dir_cntrl.persistentFromDir.master = ruby_system.network.slave
        dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered=True)
        dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version=i,
                               ruby_system=ruby_system,
                               slave=dma_port)

        dma_cntrl = DMA_Controller(version=i,
                                   dma_sequencer=dma_seq,
                                   transitions_per_cycle=options.ports,
                                   ruby_system=ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer(ordered=True)
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.reqToDirectory = MessageBuffer()
        dma_cntrl.reqToDirectory.master = ruby_system.network.slave

    all_cntrls = l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version=len(dma_ports),
                                       dma_sequencer=io_seq,
                                       ruby_system=ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer(ordered=True)
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.reqToDirectory = MessageBuffer()
        io_controller.reqToDirectory.master = ruby_system.network.slave

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 6
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, dir_cntrl_nodes, topology)
Exemplo n.º 12
0
def create_system(options, full_system, system, dma_ports, bootmem,
                  ruby_system):

    if buildEnv['PROTOCOL'] != 'MOESI_CMP_directory':
        panic(
            "This script requires the MOESI_CMP_directory protocol to be built."
        )

    cpu_sequencers = []

    #
    # The ruby network creation expects the list of nodes in the system to be
    # consistent with the NetDest list.  Therefore the l1 controller nodes must be
    # listed before the directory nodes and directory nodes before dma nodes, etc.
    #
    l1_cntrl_nodes = []
    l2_cntrl_nodes = []
    dma_cntrl_nodes = []

    #
    # Must create the individual controllers before the network to ensure the
    # controller constructors are called before the network constructor
    #
    block_size_bits = int(math.log(options.cacheline_size, 2))

    for i in range(options.num_cpus):
        #
        # First create the Ruby objects associated with this cpu
        #
        l1i_cache = L1Cache(size=options.l1i_size,
                            assoc=options.l1i_assoc,
                            start_index_bit=block_size_bits,
                            is_icache=True)
        l1d_cache = L1Cache(size=options.l1d_size,
                            assoc=options.l1d_assoc,
                            start_index_bit=block_size_bits,
                            is_icache=False)

        # the ruby random tester reuses num_cpus to specify the
        # number of cpu ports connected to the tester object, which
        # is stored in system.cpu. because there is only ever one
        # tester object, num_cpus is not necessarily equal to the
        # size of system.cpu; therefore if len(system.cpu) == 1
        # we use system.cpu[0] to set the clk_domain, thereby ensuring
        # we don't index off the end of the cpu list.
        if len(system.cpu) == 1:
            clk_domain = system.cpu[0].clk_domain
        else:
            clk_domain = system.cpu[i].clk_domain

        l1_cntrl = L1Cache_Controller(version=i,
                                      L1Icache=l1i_cache,
                                      L1Dcache=l1d_cache,
                                      send_evictions=send_evicts(options),
                                      transitions_per_cycle=options.ports,
                                      clk_domain=clk_domain,
                                      ruby_system=ruby_system)

        cpu_seq = RubySequencer(version=i,
                                icache=l1i_cache,
                                dcache=l1d_cache,
                                clk_domain=clk_domain,
                                ruby_system=ruby_system)

        l1_cntrl.sequencer = cpu_seq
        exec("ruby_system.l1_cntrl%d = l1_cntrl" % i)

        # Add controllers and sequencers to the appropriate lists
        cpu_sequencers.append(cpu_seq)
        l1_cntrl_nodes.append(l1_cntrl)

        # Connect the L1 controllers and the network
        l1_cntrl.mandatoryQueue = MessageBuffer()
        l1_cntrl.requestFromL1Cache = MessageBuffer()
        l1_cntrl.requestFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.responseFromL1Cache = MessageBuffer()
        l1_cntrl.responseFromL1Cache.master = ruby_system.network.slave
        l1_cntrl.requestToL1Cache = MessageBuffer()
        l1_cntrl.requestToL1Cache.slave = ruby_system.network.master
        l1_cntrl.responseToL1Cache = MessageBuffer()
        l1_cntrl.responseToL1Cache.slave = ruby_system.network.master
        l1_cntrl.triggerQueue = MessageBuffer(ordered=True)

    # Create the L2s interleaved addr ranges
    l2_addr_ranges = []
    l2_bits = int(math.log(options.num_l2caches, 2))
    numa_bit = block_size_bits + l2_bits - 1
    sysranges = [] + system.mem_ranges
    if bootmem: sysranges.append(bootmem.range)
    for i in range(options.num_l2caches):
        ranges = []
        for r in sysranges:
            addr_range = AddrRange(r.start,
                                   size=r.size(),
                                   intlvHighBit=numa_bit,
                                   intlvBits=l2_bits,
                                   intlvMatch=i)
            ranges.append(addr_range)
        l2_addr_ranges.append(ranges)

    for i in range(options.num_l2caches):
        #
        # First create the Ruby objects associated with this cpu
        #
        l2_cache = L2Cache(size=options.l2_size,
                           assoc=options.l2_assoc,
                           start_index_bit=block_size_bits + l2_bits)

        l2_cntrl = L2Cache_Controller(version=i,
                                      L2cache=l2_cache,
                                      transitions_per_cycle=options.ports,
                                      ruby_system=ruby_system,
                                      addr_ranges=l2_addr_ranges[i])

        exec("ruby_system.l2_cntrl%d = l2_cntrl" % i)
        l2_cntrl_nodes.append(l2_cntrl)

        # Connect the L2 controllers and the network
        l2_cntrl.GlobalRequestFromL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
        l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
        l2_cntrl.responseFromL2Cache = MessageBuffer()
        l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave

        l2_cntrl.GlobalRequestToL2Cache = MessageBuffer()
        l2_cntrl.GlobalRequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.L1RequestToL2Cache = MessageBuffer()
        l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
        l2_cntrl.responseToL2Cache = MessageBuffer()
        l2_cntrl.responseToL2Cache.slave = ruby_system.network.master
        l2_cntrl.triggerQueue = MessageBuffer(ordered=True)

    # Run each of the ruby memory controllers at a ratio of the frequency of
    # the ruby system.
    # clk_divider value is a fix to pass regression.
    ruby_system.memctrl_clk_domain = DerivedClockDomain(
        clk_domain=ruby_system.clk_domain, clk_divider=3)

    mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
        options, bootmem, ruby_system, system)
    dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
    if rom_dir_cntrl_node is not None:
        dir_cntrl_nodes.append(rom_dir_cntrl_node)
    for dir_cntrl in dir_cntrl_nodes:
        # Connect the directory controllers and the network
        dir_cntrl.requestToDir = MessageBuffer()
        dir_cntrl.requestToDir.slave = ruby_system.network.master
        dir_cntrl.responseToDir = MessageBuffer()
        dir_cntrl.responseToDir.slave = ruby_system.network.master
        dir_cntrl.responseFromDir = MessageBuffer()
        dir_cntrl.responseFromDir.master = ruby_system.network.slave
        dir_cntrl.forwardFromDir = MessageBuffer()
        dir_cntrl.forwardFromDir.master = ruby_system.network.slave
        dir_cntrl.responseFromMemory = MessageBuffer()

    for i, dma_port in enumerate(dma_ports):
        #
        # Create the Ruby objects associated with the dma controller
        #
        dma_seq = DMASequencer(version=i,
                               ruby_system=ruby_system,
                               slave=dma_port)

        dma_cntrl = DMA_Controller(version=i,
                                   dma_sequencer=dma_seq,
                                   transitions_per_cycle=options.ports,
                                   ruby_system=ruby_system)

        exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
        dma_cntrl_nodes.append(dma_cntrl)

        # Connect the dma controller to the network
        dma_cntrl.mandatoryQueue = MessageBuffer()
        dma_cntrl.responseFromDir = MessageBuffer()
        dma_cntrl.responseFromDir.slave = ruby_system.network.master
        dma_cntrl.reqToDir = MessageBuffer()
        dma_cntrl.reqToDir.master = ruby_system.network.slave
        dma_cntrl.respToDir = MessageBuffer()
        dma_cntrl.respToDir.master = ruby_system.network.slave
        dma_cntrl.triggerQueue = MessageBuffer(ordered=True)


    all_cntrls = l1_cntrl_nodes + \
                 l2_cntrl_nodes + \
                 dir_cntrl_nodes + \
                 dma_cntrl_nodes

    # Create the io controller and the sequencer
    if full_system:
        io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
        ruby_system._io_port = io_seq
        io_controller = DMA_Controller(version=len(dma_ports),
                                       dma_sequencer=io_seq,
                                       ruby_system=ruby_system)
        ruby_system.io_controller = io_controller

        # Connect the dma controller to the network
        io_controller.mandatoryQueue = MessageBuffer()
        io_controller.responseFromDir = MessageBuffer()
        io_controller.responseFromDir.slave = ruby_system.network.master
        io_controller.reqToDir = MessageBuffer()
        io_controller.reqToDir.master = ruby_system.network.slave
        io_controller.respToDir = MessageBuffer()
        io_controller.respToDir.master = ruby_system.network.slave
        io_controller.triggerQueue = MessageBuffer(ordered=True)

        all_cntrls = all_cntrls + [io_controller]

    ruby_system.network.number_of_virtual_networks = 3
    topology = create_topology(all_cntrls, options)
    return (cpu_sequencers, mem_dir_cntrl_nodes, topology)