def RunExperiment(trainVal_loader, test_loader, epochs, torchOptim, lossFn, net, results_directory, name, device='cpu', saveAccToo=False, saveNetDict=True): losses = train(net, trainVal_loader, test_loader, torchOptim, lossFn, 0, epochs, name, device=device, checkForDiv=True, saveAccToo=saveAccToo, pathToSave=results_directory, saveNetDict=saveNetDict) np.savetxt(results_directory + name + '.txt', np.array(losses), fmt='%s')
def RunExperiment(X_train, X_val, X_test, labels_train, labels_val, labels_test, train_loader, val_loader, epochs, torchOptim, lossFn, net, results_directory, name, device='cpu', saveAccToo=False): losses = train(net, train_loader, val_loader, torchOptim, lossFn, 0, epochs, name, device=device, checkForDiv=True) np.savetxt(results_directory + name + '.txt', np.array(losses))
def RunExperiment(net, train_loader, train_loader_oversampled, val_loader, \ val_loader_oversampled, Y_tr_np, Y_val_np, epochs, torchOptim, lossFnTr, lossFnVal, \ results_directory, name, lossSigm, device, saveNetDict, scheduler, tol): losses = train(net, train_loader, train_loader_oversampled, val_loader, \ val_loader_oversampled, Y_tr_np, Y_val_np, torchOptim, lossFnTr, lossFnVal, 0, epochs,\ name, device, lossSigm, checkForDiv = True, pathToSave = results_directory,\ saveNetDict = saveNetDict, scheduler = scheduler, tol = tol) np.savetxt(results_directory + name + '.txt', np.array(losses), fmt='%s')
def RunExpSavNetAndUsingTest(train_loader, test_loader, epochs, torchOptim, lossFn, net, results_directory, name, device = 'cpu', saveAccToo = False, saveNetDict = True): losses = train(net, train_loader, test_loader, torchOptim, lossFn, 0, epochs, name, device = device, checkForDiv = True, saveNetDict = saveNetDict, pathToSave = results_directory) np.savetxt(results_directory + name + '.txt', np.array(losses))