Exemplo n.º 1
0
def test_stiff():
    """
    Проверяем явные и неявные методы на жёсткой задаче
    https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
    Q: почему даже метод Розенброка иногда уменьшает шаг почти до нуля?
    """
    t0 = 0
    t1 = 800 * np.pi

    mu = 1000
    y0 = np.array([2., 0.])
    f = VanDerPol(y0, mu)

    fig1, ax1 = plt.subplots()
    fig2, (ax21, ax22) = plt.subplots(1, 2)
    fig3, ax3 = plt.subplots()

    colors = 'rgbcmyk'
    for i, (method, adapt_type) in enumerate([
        (ExplicitEulerMethod(), AdaptType.RUNGE),
        (ImplicitEulerMethod(), AdaptType.RUNGE),
        (EmbeddedRosenbrockMethod(coeffs.rosenbrock23_coeffs),
         AdaptType.EMBEDDED),
    ]):
        f.clear_call_counter()
        ts, ys = adaptive_step_integration(method,
                                           f,
                                           y0, (t0, t1),
                                           adapt_type=adapt_type,
                                           atol=1e-6,
                                           rtol=1e-3)
        print(
            f'{method.name}: {len(ts)-1} steps, {f.get_call_counter()} RHS calls'
        )

        ax1.plot([y[0] for y in ys], [y[1] for y in ys],
                 f'{colors[i]}.--',
                 label=method.name)

        ax21.plot(ts, [y[0] for y in ys], f'{colors[i]}.--', label=method.name)
        ax22.plot(ts, [y[1] for y in ys], f'{colors[i]}.--', label=method.name)

        ax3.plot(ts[:-1],
                 np.array(ts[1:]) - np.array(ts[:-1]),
                 f'{colors[i]}.--',
                 label=method.name)

    ax1.set_xlabel('x'), ax1.set_ylabel('y'), ax1.legend()
    fig1.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, y(x)')

    ax21.set_xlabel('t'), ax21.set_ylabel('x'), ax21.legend()
    ax22.set_xlabel('t'), ax22.set_ylabel('y'), ax22.legend()
    fig2.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, x(t)')

    ax3.set_xlabel('t'), ax3.set_ylabel('dt'), ax3.legend()
    fig3.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, dt(t)')

    plt.show()
Exemplo n.º 2
0
def test_stiff():
    """
    test explicit vs implicit methods on a stiff problem
    """
    t0 = 0
    t1 = 800*np.pi

    mu = 1000
    y0 = np.array([2., 0.])
    f = VanDerPol(y0, mu)

    fig1, ax1 = plt.subplots()
    fig2, (ax21, ax22) = plt.subplots(1, 2)
    fig3, ax3 = plt.subplots()

    colors = 'rgbcmyk'
    for i, (method, adapt_type) in enumerate(
            [
                (ExplicitEulerMethod(),                                AdaptType.RUNGE),
                (ImplicitEulerMethod(),                                AdaptType.RUNGE),
                (EmbeddedRosenbrockMethod(coeffs.rosenbrock23_coeffs), AdaptType.EMBEDDED),
            ]
    ):
        f.clear_call_counter()
        ts, ys = adaptive_step_integration(method, f, y0, (t0, t1),
                                           adapt_type=adapt_type,
                                           atol=1e-6, rtol=1e-3)
        print(f'{method.name}: {len(ts)-1} steps, {f.get_call_counter()} RHS calls')

        ax1.plot([y[0] for y in ys],
                 [y[1] for y in ys],
                 f'{colors[i]}.--', label=method.name)

        ax21.plot(ts,
                  [y[0] for y in ys],
                  f'{colors[i]}.--', label=method.name)
        ax22.plot(ts,
                  [y[1] for y in ys],
                  f'{colors[i]}.--', label=method.name)

        ax3.plot(ts[:-1],
                 np.array(ts[1:]) - np.array(ts[:-1]),
                 f'{colors[i]}.--', label=method.name)

    ax1.set_xlabel('x'), ax1.set_ylabel('y'), ax1.legend()
    fig1.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, y(x)')

    ax21.set_xlabel('t'), ax21.set_ylabel('x'), ax21.legend()
    ax22.set_xlabel('t'), ax22.set_ylabel('y'), ax22.legend()
    fig2.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, x(t)')

    ax3.set_xlabel('t'), ax3.set_ylabel('dt'), ax3.legend()
    fig3.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, dt(t)')

    plt.show()
Exemplo n.º 3
0
def test_stiff():
    """
    Проверяем явные и неявные методы на жёсткой задаче
    https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
    Q: почему даже метод Розенброка иногда уменьшает шаг почти до нуля?
    """
    t0 = 0
    t1 = 2500

    mu = 1000
    y0 = np.array([2., 0.])
    ode = VanDerPol(y0, mu)

    fig, axs = plt.subplots(2, 2, figsize=(10, 8))

    colors = 'rgbcmyk'
    for i, (method, adapt_type) in enumerate([
        (ExplicitEulerMethod(), AdaptType.RUNGE),
        (ImplicitEulerMethod(), AdaptType.RUNGE),
        (EmbeddedRosenbrockMethod(coeffs.rosenbrock23_coeffs),
         AdaptType.EMBEDDED),
    ]):
        ode.clear_call_counter()
        ts, ys = adaptive_step_integration(method,
                                           ode,
                                           y0, (t0, t1),
                                           adapt_type=adapt_type,
                                           atol=1e-6,
                                           rtol=1e-3)
        print(
            f'{method.name}: {len(ts)-1} steps, {ode.get_call_counter()} RHS calls'
        )

        axs[0, 0].plot([y[0] for y in ys], [y[1] for y in ys],
                       f'{colors[i]}.--',
                       label=method.name)
        axs[0, 1].plot(ts[:-1],
                       np.diff(ts),
                       f'{colors[i]}.--',
                       label=method.name)
        axs[1, 0].plot(ts, [y[0] for y in ys],
                       f'{colors[i]}.--',
                       label=method.name)
        axs[1, 1].plot(ts, [y[1] for y in ys],
                       f'{colors[i]}.--',
                       label=method.name)

    axs[0, 0].legend(), axs[0, 0].set_title('y(x)')
    axs[0, 1].legend(), axs[0, 1].set_title('dt(t)')
    axs[1, 0].legend(), axs[1, 0].set_title('x(t)')
    axs[1, 1].legend(), axs[1, 1].set_title('y(t)')

    fig.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}')
    fig.tight_layout()
    plt.show()
Exemplo n.º 4
0
def test_stiff():
    """
    test explicit vs implicit methods on a stiff problem
    """
    t0 = 0
    t1 = 8*np.pi

    mu = 0
    y0 = np.array([2., 0.])
    f = VanDerPol(y0, mu)

    colors = 'rgbcmyk'
    for i, (method, adapt_type) in enumerate(
            [
                (ExplicitEulerMethod(),                                    AdaptType.RUNGE),
                (ImplicitEulerMethod(),                                    AdaptType.RUNGE),
                (RungeKuttaMethod(collection.rk4_coeffs),                  AdaptType.RUNGE),
                (EmbeddedRosenbrockMethod(collection.rosenbrock23_coeffs), AdaptType.EMBEDDED),
            ]
    ):
        f.clear_call_counter()
        ts, ys = adaptive_step_integration(method, f, y0, (t0, t1), adapt_type=adapt_type, atol=1e-6, rtol=1e-3)
        print(f'{method.name}: {len(ts)-1} steps, {f.get_call_counter()} RHS calls')

        plt.figure(1)
        plt.plot([y[0] for y in ys],
                 [y[1] for y in ys],
                 f'{colors[i]}.--', label=method.name)
        plt.figure(2)
        plt.subplot(1,2,1), plt.plot(ts, [y[0] for y in ys], f'{colors[i]}.--', label=method.name)
        plt.subplot(1,2,2), plt.plot(ts, [y[1] for y in ys], f'{colors[i]}.--', label=method.name)
        plt.figure(3)
        plt.plot(ts[:-1],
                 np.array(ts[1:]) - np.array(ts[:-1]),
                 f'{colors[i]}.--', label=method.name)

    plt.figure(1)
    plt.xlabel('x'), plt.ylabel('y'), plt.legend()
    plt.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, y(x)')

    plt.figure(2)
    plt.subplot(1,2,1), plt.xlabel('t'), plt.ylabel('x'), plt.legend()
    plt.subplot(1,2,2), plt.xlabel('t'), plt.ylabel('y'), plt.legend()
    plt.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, x(t)')

    plt.figure(3)
    plt.xlabel('t'), plt.ylabel('dt'), plt.legend()
    plt.suptitle(f'test_stiff: Van der Pol, mu={mu:.2f}, dt(t)')

    plt.show()
Exemplo n.º 5
0
def test_one_step():
    """
    Проверяем методы Эйлера и Рунге-Кутты
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi

    ode = Harmonic(y0, 1, 1)

    for dt in [0.1, 0.01]:
        ts = np.arange(t0, t1 + dt, dt)

        exact = ode[ts].T
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
        ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')

        colors = 'rgbcmyk'
        for i, method in enumerate([
                ExplicitEulerMethod(),
                ImplicitEulerMethod(),
                RungeKuttaMethod(collection.rk4_coeffs),
                RungeKuttaMethod(collection.dopri_coeffs),
        ]):
            ode.clear_call_counter()
            _, y = fix_step_integration(method, ode, y0, ts)
            n_calls = ode.get_call_counter()
            print(
                f'One-step {method.name}: {len(y)-1} steps, {n_calls} function calls'
            )

            ax1.plot(ts, [_y[0] for _y in y],
                     f'{colors[i]}.--',
                     label=method.name)
            ax2.plot(ts,
                     get_accuracy(exact, y),
                     f'{colors[i]}.--',
                     label=method.name)

        ax1.legend(), ax1.set_title('y(t)')
        ax2.legend(), ax2.set_title('accuracy')

        fig.suptitle(f'test_one_step, dt={dt}')
        fig.tight_layout()

    plt.show()
Exemplo n.º 6
0
def test_one_step():
    """
    test Euler and RK methods
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi / 2
    dt = 0.1

    f = Harmonic(y0, 1, 1)
    ts = np.arange(t0, t1 + dt, dt)

    exact = f[ts].T
    _, (ax1, ax2) = plt.subplots(1, 2)
    ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')

    colors = 'rgbcmyk'
    for i, method in enumerate([
            ExplicitEulerMethod(),
            ImplicitEulerMethod(),
            RungeKuttaMethod(collection.rk4_coeffs),
            RungeKuttaMethod(collection.dopri_coeffs),
    ]):
        f.clear_call_counter()
        _, y = fix_step_integration(method, f, y0, ts)
        n_calls = f.get_call_counter()
        print(
            f'One-step {method.name}: {len(y)-1} steps, {n_calls} function calls'
        )

        ax1.plot(ts, [_y[0] for _y in y], f'{colors[i]}.--', label=method.name)
        ax2.plot(ts,
                 get_accuracy(exact, y),
                 f'{colors[i]}.--',
                 label=method.name)

    ax1.set_xlabel('t'), ax1.set_ylabel('y'), ax1.legend()
    ax2.set_xlabel('t'), ax2.set_ylabel('accuracy'), ax2.legend()
    plt.suptitle('test_one_step')
    plt.show()
Exemplo n.º 7
0
def test_one_step():
    """
    test Euler and RK methods
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi / 2
    dt = 0.1

    f = Harmonic(y0, 1, 1)
    ts = np.arange(t0, t1 + dt, dt)

    exact = f[ts].T
    plt.figure()
    plt.subplot(1, 2, 1)
    plt.plot(ts, [e[0] for e in exact], 'k', label='Exact')

    colors = 'rgbcmyk'
    for i, method in enumerate([
            ExplicitEulerMethod(),
            ImplicitEulerMethod(),
            RungeKuttaMethod(collection.rk4_coeffs),
            RungeKuttaMethod(collection.dopri_coeffs),
    ]):
        _, y = fix_step_integration(method, f, y0, ts)
        print(f'len(Y): {len(y)}')
        print(f'Function calls: {f.get_call_counter()}')

        plt.subplot(1, 2, 1), plt.plot(ts, [_y[0] for _y in y],
                                       f'{colors[i]}.--',
                                       label=method.name)
        plt.subplot(1, 2, 2), plt.plot(ts,
                                       get_log_error(exact, y),
                                       f'{colors[i]}.--',
                                       label=method.name)

    plt.subplot(1, 2, 1), plt.xlabel('t'), plt.ylabel('y'), plt.legend()
    plt.subplot(1, 2, 2), plt.xlabel('t'), plt.ylabel('accuracy'), plt.legend()
    plt.suptitle('test_one_step')
    plt.show()