Exemplo n.º 1
0
def analyze(problem, X, Y, second_order=False, print_to_console=False):
    """Perform a fractional factorial analysis

    Returns a dictionary with keys 'ME' (main effect) and 'IE' (interaction
    effect). The techniques bulks out the number of parameters with dummy
    parameters to the nearest 2**n.  Any results involving dummy parameters
    could indicate a problem with the model runs.

    Arguments
    ---------
    problem: dict
        The problem definition
    X: numpy.matrix
        The NumPy matrix containing the model inputs
    Y: numpy.array
        The NumPy array containing the model outputs
    second_order: bool, default=False
        Include interaction effects
    print_to_console: bool, default=False
        Print results directly to console

    Returns
    -------
    Si: dict
        A dictionary of sensitivity indices, including main effects ``ME``,
        and interaction effects ``IE`` (if ``second_order`` is True)

    Examples
    --------
    >>> X = sample(problem)
    >>> Y = X[:, 0] + (0.1 * X[:, 1]) + ((1.2 * X[:, 2]) * (0.2 + X[:, 0]))
    >>> analyze(problem, X, Y, second_order=True, print_to_console=True)
    """

    problem = extend_bounds(problem)
    num_vars = problem['num_vars']

    X = generate_contrast(problem)

    main_effect = (1. / (2 * num_vars)) * np.dot(Y, X)

    Si = dict((k, [None] * num_vars)
              for k in ['names', 'ME'])
    Si['ME'] = main_effect
    Si['names'] = problem['names']

    if print_to_console:
        print("Parameter ME")
        for j in range(num_vars):
            print("%s %f" % (problem['names'][j], Si['ME'][j]))

    if second_order == True:
        interaction_names, interaction_effects = interactions(problem,
                                                              Y,
                                                              print_to_console)

        Si['names'].append(interaction_names)
        Si['IE'] = interaction_effects

    return Si
Exemplo n.º 2
0
def analyze(problem, X, Y, second_order=False, print_to_console=False):
    
    problem = extend_bounds(problem)
    num_vars = problem['num_vars']
    
    X = generate_contrast(problem)
    
    main_effect = (1. / (2 * num_vars)) * np.dot(Y, X)
    
    Si = dict((k, [None] * num_vars)
              for k in ['names', 'ME'])
    Si['ME'] = main_effect
    Si['names'] = problem['names']
        
    if print_to_console:
        print("Parameter ME")
        for j in range(num_vars):
            print("%s %f" % (problem['names'][j], Si['ME'][j]))
    
    if second_order == True:
        interaction_names, interaction_effects = interactions(problem, 
                                                              Y, 
                                                              print_to_console)
    
        Si['names'].append(interaction_names)
        Si['IE'] = interaction_effects
    
    return Si
Exemplo n.º 3
0
def test_extend_bounds():
    problem = {
        'bounds': np.repeat([-1, 1], 12).reshape(2, 12).T,
        'num_vars': 12,
        'names': ["x" + str(x + 1) for x in range(12)]
    }
    actual = extend_bounds(problem)
    expected = {
        'names': [
            'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11',
            'x12', 'dummy_0', 'dummy_1', 'dummy_2', 'dummy_3'
        ],
        'bounds': [
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([-1, 1]),
            np.array([0, 1]),
            np.array([0, 1]),
            np.array([0, 1]),
            np.array([0, 1])
        ],
        'num_vars':
        16
    }

    assert_equal(actual, expected)
Exemplo n.º 4
0
Arquivo: ff.py Projeto: dharp/matk
def analyze(problem, X, Y, second_order=False, print_to_console=False):
    """Perform a fractional factorial analysis

    Returns a dictionary with keys 'ME' (main effect) and 'IE' (interaction
    effect). The techniques bulks out the number of parameters with dummy
    parameters to the nearest 2**n.  Any results involving dummy parameters
    could indicate a problem with the model runs.

    Arguments
    ---------
    problem: dict
        The problem definition
    X: numpy.matrix
        The NumPy matrix containing the model inputs
    Y: numpy.array
        The NumPy array containing the model outputs
    second_order: bool, default=False
        Include interaction effects
    print_to_console: bool, default=False
        Print results directly to console

    Returns
    -------
    Si: dict
        A dictionary of sensitivity indices, including main effects ``ME``,
        and interaction effects ``IE`` (if ``second_order`` is True)

    Examples
    --------
    >>> X = sample(problem)
    >>> Y = X[:, 0] + (0.1 * X[:, 1]) + ((1.2 * X[:, 2]) * (0.2 + X[:, 0]))
    >>> analyze(problem, X, Y, second_order=True, print_to_console=True)
    """

    problem = extend_bounds(problem)
    num_vars = problem['num_vars']

    X = generate_contrast(problem)

    main_effect = (1. / (2 * num_vars)) * np.dot(Y, X)

    Si = dict((k, [None] * num_vars)
              for k in ['names', 'ME'])
    Si['ME'] = main_effect
    Si['names'] = problem['names']

    if print_to_console:
        print("Parameter ME")
        for j in range(num_vars):
            print("%s %f" % (problem['names'][j], Si['ME'][j]))

    if second_order == True:
        interaction_names, interaction_effects = interactions(problem,
                                                              Y,
                                                              print_to_console)

        Si['names'].append(interaction_names)
        Si['IE'] = interaction_effects

    return Si
Exemplo n.º 5
0
def analyze(problem,
            X,
            Y,
            second_order=False,
            print_to_console=False,
            seed=None):
    """Perform a fractional factorial analysis

    Returns a dictionary with keys 'ME' (main effect) and 'IE' (interaction
    effect). The techniques bulks out the number of parameters with dummy
    parameters to the nearest 2**n.  Any results involving dummy parameters
    could indicate a problem with the model runs.

    Compatible with
    ---------------
    * `ff`

    Parameters
    ----------
    problem: dict
        The problem definition
    X: numpy.matrix
        The NumPy matrix containing the model inputs
    Y: numpy.array
        The NumPy array containing the model outputs
    second_order: bool, default=False
        Include interaction effects
    print_to_console: bool, default=False
        Print results directly to console

    Returns
    -------
    Si: dict
        A dictionary of sensitivity indices, including main effects ``ME``,
        and interaction effects ``IE`` (if ``second_order`` is True)

    References
    ----------
    .. [1] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., 
           Saisana, M., Tarantola, S., 2008. 
           Global Sensitivity Analysis: The Primer. 
           Wiley, West Sussex, U.K.
           https://dx.doi.org/10.1002/9780470725184

    Examples
    --------
    >>> X = sample(problem)
    >>> Y = X[:, 0] + (0.1 * X[:, 1]) + ((1.2 * X[:, 2]) * (0.2 + X[:, 0]))
    >>> analyze(problem, X, Y, second_order=True, print_to_console=True)
    """
    if seed:
        np.random.seed(seed)

    problem = extend_bounds(problem)
    num_vars = problem['num_vars']

    X = generate_contrast(problem)

    main_effect = (1. / (2 * num_vars)) * np.dot(Y, X)

    Si = ResultDict((k, [None] * num_vars) for k in ['names', 'ME'])
    Si['ME'] = main_effect
    Si['names'] = problem['names']

    if second_order:
        interaction_names, interaction_effects = interactions(problem, Y)
        Si['interaction_names'] = interaction_names
        Si['IE'] = interaction_effects

    Si.to_df = MethodType(to_df, Si)

    if print_to_console:
        for S in Si.to_df():
            print(S)

    return Si