Exemplo n.º 1
0
def test_catch_inputs_not_in_zero_one_range():
    input_1 = [[0, 1 / 3.], [0, 1.], [2 / 3., 1.]]
    input_2 = [[0, 1 / 3.], [2 / 3., 1 / 3.], [2 / 3., 1.]]
    input_3 = [[2 / 3., 0], [2 / 3., 2 / 3.], [0, 2 / 3.]]
    input_4 = [[1 / 3., 1.], [1., 1.], [1, 1 / 3.]]
    input_5 = [[1 / 3., 1.], [1 / 3., 1 / 3.], [1, 1 / 3.]]
    input_6 = [[1 / 3., 2 / 3.], [1 / 3., 0], [1., 0]]
    input_sample = np.concatenate(
        [input_1, input_2, input_3, input_4, input_5, input_6])
    problem = {'num_vars': 2, 'groups': None}
    k_choices = 4
    N = 10
    input_sample *= 10
    compute_optimised_trajectories(problem, input_sample, N, k_choices)
Exemplo n.º 2
0
def test_raise_error_if_k_gt_N():
    """
    Check that an error is raised if `k_choices` is greater than (or equal to) `N`
    """
    N = 4
    param_file = "SALib/tests/test_params.txt"
    problem = read_param_file(param_file)
    num_levels = 4
    grid_jump = num_levels / 2
    k_choices = 6

    morris_sample = sample_oat(problem, N, num_levels, grid_jump)

    compute_optimised_trajectories(problem, morris_sample, N, k_choices)
def test_raise_error_if_k_gt_N():
    """
    Check that an error is raised if `k_choices` is greater than (or equal to) `N`
    """
    N = 4
    param_file = "SALib/tests/test_params.txt"
    problem = read_param_file(param_file)
    num_levels = 4
    grid_jump = num_levels / 2
    k_choices = 6

    morris_sample = sample_oat(problem, N, num_levels, grid_jump)


    compute_optimised_trajectories(problem,
                                   morris_sample,
                                   N,
                                   k_choices)
Exemplo n.º 4
0
def test_find_optimum_trajectories():
    input_1 = [[0, 1 / 3.], [0, 1.], [2 / 3., 1.]]
    input_2 = [[0, 1 / 3.], [2 / 3., 1 / 3.], [2 / 3., 1.]]
    input_3 = [[2 / 3., 0], [2 / 3., 2 / 3.], [0, 2 / 3.]]
    input_4 = [[1 / 3., 1.], [1., 1.], [1, 1 / 3.]]
    input_5 = [[1 / 3., 1.], [1 / 3., 1 / 3.], [1, 1 / 3.]]
    input_6 = [[1 / 3., 2 / 3.], [1 / 3., 0], [1., 0]]
    input_sample = np.concatenate(
        [input_1, input_2, input_3, input_4, input_5, input_6])
    N = 6
    problem = {'num_vars': 2, 'groups': None}
    k_choices = 4

    output = compute_optimised_trajectories(problem, input_sample, N,
                                            k_choices)
    expected = np.concatenate([input_1, input_3, input_4, input_6])
    np.testing.assert_equal(output, expected)
def test_size_of_trajectories_with_groups():
    '''
    Tests that the number of trajectories produced is computed
    correctly (i.e. that the size of the trajectories is a function
    of the number of groups, rather than the number of variables
    when groups are used.
    
    There are seven variables and three groups.
    With N=10:
    1. the sample ignoring groups (i.e. the call to `sample_oat')
    should be of size N*(D+1)-by-D.
    2. the sample with groups should be of size N*(G+1)-by-D
    When k=4:
    3. the optimal sample ignoring groups should be of size k*(D+1)-by-D
    4. the optimal sample with groups should be of size k*(G+1)-by-D
    '''
    param_file = "SALib/tests/test_param_file_w_groups_prime.txt"
    group_problem = read_param_file(param_file)
    no_group_problem = read_param_file(param_file)
    no_group_problem['groups'] = None
    
    N = 11
    num_levels = 8
    grid_jump = 4
    k_choices = 4    
    num_params = group_problem['num_vars']
    
    num_groups = 3

    # Test 1. dimensions of sample ignoring groups    
    sample = sample_oat(no_group_problem,
                        N,
                        num_levels,
                        grid_jump)

    size_x, size_y = sample.shape


    assert_equal(size_x, N * (num_params + 1))
    assert_equal(size_y, num_params)

    # Test 2. dimensions of sample with groups

    group_sample = sample_groups(group_problem,
                                 N,
                                 num_levels,
                                 grid_jump)

    size_x, size_y = group_sample.shape

    assert_equal(size_x, N * (num_groups + 1))
    assert_equal(size_y, num_params)

    # Test 3. dimensions of optimal sample without groups
    
    optimal_sample_without_groups = compute_optimised_trajectories(no_group_problem,
                                                              sample,
                                                              N,
                                                              k_choices)

    size_x, size_y = optimal_sample_without_groups.shape

    assert_equal(size_x, k_choices * (num_params + 1))
    assert_equal(size_y, num_params)


    # Test 4. dimensions of optimal sample with groups

    optimal_sample_with_groups = compute_optimised_trajectories(group_problem,
                                                           group_sample,
                                                           N,
                                                           k_choices)

    size_x, size_y = optimal_sample_with_groups.shape

    assert_equal(size_x, k_choices * (num_groups + 1))
    assert_equal(size_y, num_params)
Exemplo n.º 6
0
def test_size_of_trajectories_with_groups():
    '''
    Tests that the number of trajectories produced is computed
    correctly (i.e. that the size of the trajectories is a function
    of the number of groups, rather than the number of variables
    when groups are used.
    
    There are seven variables and three groups.
    With N=10:
    1. the sample ignoring groups (i.e. the call to `sample_oat')
    should be of size N*(D+1)-by-D.
    2. the sample with groups should be of size N*(G+1)-by-D
    When k=4:
    3. the optimal sample ignoring groups should be of size k*(D+1)-by-D
    4. the optimal sample with groups should be of size k*(G+1)-by-D
    '''
    param_file = "SALib/tests/test_param_file_w_groups_prime.txt"
    group_problem = read_param_file(param_file)
    no_group_problem = read_param_file(param_file)
    no_group_problem['groups'] = None

    N = 11
    num_levels = 8
    grid_jump = 4
    k_choices = 4
    num_params = group_problem['num_vars']

    num_groups = 3

    # Test 1. dimensions of sample ignoring groups
    sample = sample_oat(no_group_problem, N, num_levels, grid_jump)

    size_x, size_y = sample.shape

    assert_equal(size_x, N * (num_params + 1))
    assert_equal(size_y, num_params)

    # Test 2. dimensions of sample with groups

    group_sample = sample_groups(group_problem, N, num_levels, grid_jump)

    size_x, size_y = group_sample.shape

    assert_equal(size_x, N * (num_groups + 1))
    assert_equal(size_y, num_params)

    # Test 3. dimensions of optimal sample without groups

    optimal_sample_without_groups = compute_optimised_trajectories(
        no_group_problem, sample, N, k_choices)

    size_x, size_y = optimal_sample_without_groups.shape

    assert_equal(size_x, k_choices * (num_params + 1))
    assert_equal(size_y, num_params)

    # Test 4. dimensions of optimal sample with groups

    optimal_sample_with_groups = compute_optimised_trajectories(
        group_problem, group_sample, N, k_choices)

    size_x, size_y = optimal_sample_with_groups.shape

    assert_equal(size_x, k_choices * (num_groups + 1))
    assert_equal(size_y, num_params)