Exemplo n.º 1
0
class TestSimpleSBML(unittest.TestCase):
    def setUp(self):
        self.simple = SimpleSBML()
        self.simple.initialize(cn.TEST_FILE)

    def testInitialize(self):
        if IGNORE_TEST:
            return
        simple = SimpleSBML()
        simple.initialize(cn.TEST_FILE)
        self.assertEqual(len(simple.reactions), cn.NUM_REACTIONS)
        self.assertEqual(len(simple.molecules), len(simple.moietys))

    def testGetMolecule(self):
        if IGNORE_TEST:
            return
        molecule1 = self.simple.molecules[0]
        name = molecule1.name
        molecule2 = self.simple.getMolecule(name)
        self.assertTrue(molecule1.isEqual(molecule2))
        self.assertIsNone(self.simple.getMolecule(NO_NAME))

    def testAdd(self):
        if IGNORE_TEST:
            return

        def test():
            self.assertEqual(len(self.simple.reactions), 2)
            for reaction in [reaction0, reaction1]:
                self.assertTrue(reaction in self.simple.reactions)

        #
        reaction0 = self.simple.reactions[0]
        reaction1 = self.simple.reactions[1]
        self.simple.reactions = [reaction0]
        self.simple.add(reaction1)
        test()
        self.simple.add(reaction1)
        test()

    def testRemove(self):
        num_reactions = len(self.simple.reactions)
        reaction0 = self.simple.reactions[0]
        reaction1 = self.simple.reactions[1]
        self.simple.remove(reaction0)
        self.assertTrue(reaction0 not in self.simple.reactions)
        self.assertTrue(reaction1 in self.simple.reactions)
        self.simple.add(reaction0)
        self.assertTrue(len(self.simple.reactions), num_reactions)

    def testGetReaction(self):
        if IGNORE_TEST:
            return
        reaction = self.simple.reactions[0]
        label = reaction.label
        reaction1 = self.simple.getReaction(label)
        self.assertTrue(reaction.isEqual(reaction1))
Exemplo n.º 2
0
class TestSOM(unittest.TestCase):
    def setUp(self):
        self.simple = SimpleSBML()
        self.simple.initialize(cn.TEST_FILE3)
        self.molecules = self.simple.molecules
        self.soms = []
        for mole in self.molecules:
            self.soms.append(SOM({mole}))

    def testConstructor(self):
        if IGNORE_TEST:
            return
        self.assertEqual(len(self.soms), len(self.molecules))
        self.assertEqual(self.soms[0].molecules, {self.molecules[0]})

    def testMakeId(self):
        if IGNORE_TEST:
            return
        som = self.soms[0]
        self.assertTrue(som.molecules.intersection(self.molecules))
        molecule = list(re.findall(NAMEFILTER, som.identifier))[0]
        self.assertEqual(
            list(som.molecules)[0], self.simple.getMolecule(molecule))

    def testMerge(self):
        if IGNORE_TEST:
            return
        som1 = self.soms[0]
        som2 = self.soms[1]
        molecule1 = list(som1.molecules)[0]
        molecule2 = list(som2.molecules)[0]
        new_som = som1.merge(som2)
        self.assertEqual(len(new_som.molecules), NUM_MERGED_SOMS)
        self.assertTrue(molecule1 in new_som.molecules)
        self.assertTrue(molecule2 in new_som.molecules)
Exemplo n.º 3
0
class TestMESGraph(unittest.TestCase):

  def setUp(self):
    # SimpleSBML with type I error
    self.simple = SimpleSBML()
    self.simple.initialize(cn.TEST_FILE6)
    # SimpleSBML with type II error
    self.simple2 = SimpleSBML()
    self.simple2.initialize(cn.TEST_FILE7)
    # SimpleSBML for type III error
    self.simple3 = SimpleSBML()
    self.simple3.initialize(cn.TEST_FILE10)
    # SimpleSBML for type IV error
    self.simple4 = SimpleSBML()
    self.simple4.initialize(cn.TEST_FILE11)
    # simple5 for type V error    
    self.simple5 = SimpleSBML()
    self.simple5.initialize(cn.TEST_FILE12)
    # simple6 will test multi-multi model with no errors
    self.simple6 = SimpleSBML()
    self.simple6.initialize(cn.TEST_FILE3)
    self.mesgraph = MESGraph(self.simple)
  
  def testConstructor(self):
    if IGNORE_TEST:
      return
    self.assertEqual(len(self.mesgraph.nodes), INITIAL_NODES)
    self.assertEqual(len(self.mesgraph.edges), INITIAL_EDGES)
    dfg = self.simple.getMolecule(DFG)
    # molecules is a list of one-molecule sets
    molecules = [som.molecules for som in self.mesgraph.nodes]
    self.assertTrue({self.simple.getMolecule(DFG)} in molecules)
    self.assertEqual(len(self.mesgraph.type_one_errors), 0)
    self.assertEqual(len(self.mesgraph.type_two_errors), 0)
    self.assertEqual(len(self.mesgraph.type_three_errors), 0)
    self.assertEqual(len(self.mesgraph.type_four_errors), 0)
    self.assertEqual(len(self.mesgraph.type_five_errors), 0)

  def testInitializeSOMs(self):
    if IGNORE_TEST:
      return
    for node in self.mesgraph.nodes:
      self.assertEqual(type(node), SOM)
  
  def testMakeId(self):
    if IGNORE_TEST:
      return
    identifier = ""
    for key, som in enumerate(self.mesgraph.nodes):
      identifier = identifier + som.identifier
      if key < len(self.mesgraph.nodes)-1:
        identifier = identifier + ";"
    self.assertEqual(identifier, self.mesgraph.identifier)

  def testGetNode(self):
    if IGNORE_TEST:
      return
    aa = self.simple.getMolecule(AA)
    aa_node = self.mesgraph.getNode(aa)
    self.assertEqual(type(aa_node), SOM)
    self.assertEqual(aa_node.molecules, {aa})
  
  def testMergeNodes(self):
    if IGNORE_TEST:
      return
    m3 = MESGraph(self.simple3)
    v1_reaction = self.simple3.getReaction(V1)
    v2_reaction = self.simple3.getReaction(V2)
    amp_molecule = self.simple3.getMolecule(AMP)
    adp_molecule = self.simple3.getMolecule(ADP)
    atp_molecule = self.simple3.getMolecule(ATP)
    amp_som = m3.getNode(amp_molecule)
    adp_som = m3.getNode(adp_molecule)
    atp_som = m3.getNode(atp_molecule)
    ampatp_som = m3.mergeNodes(amp_som, atp_som, v1_reaction)
    self.assertTrue(amp_molecule in ampatp_som.molecules)
    self.assertTrue(atp_molecule in ampatp_som.molecules)
    self.assertTrue(ampatp_som in m3.nodes)
    # tests if anohter merge will remove previous nodes
    ampadpatp_som = m3.mergeNodes(ampatp_som, adp_som, v2_reaction)
    self.assertFalse(ampatp_som in m3.nodes)
    self.assertFalse(adp_som in m3.nodes)  
    self.assertTrue(ampadpatp_som in m3.nodes)

  def testProcessUniUniReaction(self):
    if IGNORE_TEST:
      return
    self.mesgraph.processUniUniReaction(
        self.simple.reactions[UNIUNI0])
    dfg = self.mesgraph.getNode(self.simple.getMolecule(DFG))
    e1 = self.mesgraph.getNode(self.simple.getMolecule(E1))
    self.assertTrue(self.mesgraph.has_node(dfg))
    self.assertTrue(self.mesgraph.has_node(e1))
    self.assertEqual(dfg, e1)
  
  def testProcessUniMultiReaction(self):
    if IGNORE_TEST:
      return
    unimulti_reaction = self.simple.reactions[UNIMULTI]
    self.mesgraph.processUniMultiReaction(unimulti_reaction)
    prods = [self.mesgraph.getNode(product.molecule) for product in unimulti_reaction.products]
    dfg = self.mesgraph.getNode(self.simple.getMolecule(DFG))
    for prod in prods:
      self.assertTrue(self.mesgraph.has_edge(prod, dfg))
  
  def testProcessMultiUniReaction(self):
    if IGNORE_TEST:
      return
    multiuni_reaction = self.simple.reactions[MULTIUNI]
    self.mesgraph.processMultiUniReaction(multiuni_reaction)
    reacts = [self.mesgraph.getNode(reactant.molecule) for reactant in multiuni_reaction.reactants]
    mel = self.mesgraph.getNode(self.simple.getMolecule(MEL))
    for react in reacts:
      self.assertTrue(self.mesgraph.has_edge(react, mel))
  
  def testAddMultiMultiReaction(self):
    if IGNORE_TEST:
      return
    m3 = MESGraph(self.simple3)
    v2 = self.simple3.getReaction(V2)
    m3.addMultiMultiReaction(v2)
    self.assertTrue(v2 in m3.multimulti_reactions)

  def testAddTypeThreeError(self):
    if IGNORE_TEST:
      return
    m3 = MESGraph(self.simple3)
    v1 = self.simple3.getReaction(V1)
    v2 = self.simple3.getReaction(V2)
    v3 = self.simple3.getReaction(V3)
    m3.processUniUniReaction(v1)
    m3.processUniMultiReaction(v3)
    amp = m3.getNode(self.simple3.getMolecule(AMP))
    atp = m3.getNode(self.simple3.getMolecule(ATP))
    self.assertTrue(m3.addTypeThreeError(amp, atp, v2))
    self.assertTrue(len(m3.type_three_errors), 1)
    error = m3.type_three_errors[0]
    self.assertEqual(error.node1, amp)
    self.assertEqual(error.node2, atp)
    self.assertEqual(error.reactions, [v2.label])

  def testCheckTypeThreeError(self):
    if IGNORE_TEST:
      return
    m3 = MESGraph(self.simple3)
    v1 = self.simple3.getReaction(V1)
    v2 = self.simple3.getReaction(V2)
    v3 = self.simple3.getReaction(V3)
    m3.processUniUniReaction(v1)
    adp = m3.getNode(self.simple3.getMolecule(ADP))
    atp = m3.getNode(self.simple3.getMolecule(ATP))
    self.assertFalse(m3.checkTypeThreeError(adp, atp, v3))
    m3.processUniMultiReaction(v3) 
    self.assertTrue(m3.checkTypeThreeError(adp, atp, v2))
    self.assertTrue(m3.checkTypeThreeError(atp, adp, v2))

  def testReduceReaction(self):
    if IGNORE_TEST:
      return
    m4 = MESGraph(self.simple4)
    atpase = m4.simple.getReaction(ATPASE)
    lower = m4.simple.getReaction(LOWER)
    self.assertFalse(m4.reduceReaction(atpase))
    m4.processUniUniReaction(atpase)
    reduced_reaction = m4.reduceReaction(lower)
    self.assertEqual(type(reduced_reaction), Reaction)
    self.assertEqual(len(reduced_reaction.reactants), 1)
    self.assertEqual(reduced_reaction.products, [])   
    self.assertEqual(reduced_reaction.reactants[0].molecule.name, FRU16P2)

  def testProcessMultiMultiReactions(self):
    if IGNORE_TEST:
      return
    # type III error
    m3 = MESGraph(self.simple3)
    v1 = self.simple3.getReaction(V1)
    v2 = self.simple3.getReaction(V2)
    v3 = self.simple3.getReaction(V3)
    m3.processUniUniReaction(v1)
    m3.processUniMultiReaction(v3) 
    self.assertEqual(m3.type_three_errors, [])
    self.assertTrue(m3.processMultiMultiReaction(v2))
    self.assertEqual(len(m3.type_three_errors), 1) 
    # type IV error
    m4 = MESGraph(self.simple4)
    atpase = m4.simple.getReaction(ATPASE)
    lower = m4.simple.getReaction(LOWER)
    m4.processUniUniReaction(atpase)  
    self.assertEqual(m4.type_four_errors, []) 
    self.assertTrue(m4.processMultiMultiReaction(lower))
    self.assertEqual(len(m4.type_four_errors), 1)
    # no error
    m6 = MESGraph(self.simple6)
    r5 = m6.simple.getReaction(R5)
    r12 = m6.simple.getReaction(R12)
    m6.processUniUniReaction(r12)
    ac = m6.getNode(self.simple6.getMolecule(AC))
    acp = m6.getNode(self.simple6.getMolecule(ACP))
    self.assertFalse(ac==acp)
    self.assertTrue(m6.processMultiMultiReaction(r5))
    ac = m6.getNode(self.simple6.getMolecule(AC))
    acp = m6.getNode(self.simple6.getMolecule(ACP))
    self.assertTrue(ac==acp)

  def testAddArc(self):
    if IGNORE_TEST:
      return
    source = [self.mesgraph.getNode(self.simple.getMolecule(FRU)), 
              self.mesgraph.getNode(self.simple.getMolecule(GLY))]
    destination = [self.mesgraph.getNode(self.simple.getMolecule(E2))]
    dummy_reaction = self.simple.reactions[INEQUAL2]
    self.mesgraph.addArc(source[0], destination[0], dummy_reaction)
    self.mesgraph.addArc(source[1], destination[0], dummy_reaction)
    arc1 = [source[0], destination[0]]
    arc2 = [source[1], destination[0]]
    self.assertTrue(self.mesgraph.has_edge(arc1[0], arc1[1]))
    self.assertTrue(self.mesgraph.has_edge(arc2[0], arc2[1]))
    reaction_label1 = self.mesgraph.get_edge_data(arc1[0], arc1[1])[cn.REACTION][0]
    reaction_label2 = self.mesgraph.get_edge_data(arc2[0], arc1[1])[cn.REACTION][0]
    self.assertEqual(reaction_label1, dummy_reaction.label)
    self.assertEqual(reaction_label1, reaction_label2)
  
  def testGetSOMPath(self):
    if IGNORE_TEST:
      return
    uniuni_reaction = self.simple.reactions[UNIUNI0]
    self.mesgraph.processUniUniReaction(uniuni_reaction)
    dfg = self.simple.getMolecule(DFG)
    e1 = self.simple.getMolecule(E1)
    som = self.mesgraph.getNode(dfg)
    som_path = self.mesgraph.getSOMPath(som, e1, dfg)
    self.assertEqual(type(som_path[0]), cn.PathComponents)
    self.assertEqual(som_path[0].reactions, [uniuni_reaction.label])
    self.assertEqual(len(som_path), 1)

  def testPrintSOMPath(self):
    if IGNORE_TEST:
      return
    uniuni_reaction = self.simple.reactions[UNIUNI0]
    self.mesgraph.processUniUniReaction(uniuni_reaction)
    self.assertTrue(type(self.mesgraph.printSOMPath(DFG, E1))==str)
    self.assertFalse(self.mesgraph.printSOMPath(GLY, MEL))

  def testCheckTypeOneError(self):
    if IGNORE_TEST:
      return
    uniuni_reaction1 = self.simple.reactions[UNIUNI1]
    uniuni_reaction2 = self.simple.reactions[UNIUNI2]
    inequality_reaction1 = self.simple.reactions[INEQUAL1]
    inequality_reaction2 = self.simple.reactions[INEQUAL2]
    self.mesgraph.processUniUniReaction(uniuni_reaction1)
    self.mesgraph.processUniUniReaction(uniuni_reaction2)
    aa = self.simple.getMolecule(AA)
    cn = self.simple.getMolecule(CN)
    mg = self.simple.getMolecule(MG)
    self.assertTrue(self.mesgraph.checkTypeOneError((aa, cn), inequality_reaction1))
    self.assertFalse(self.mesgraph.checkTypeOneError((mg, aa), inequality_reaction2))
    self.assertTrue(len(self.mesgraph.type_one_errors)>0)
    self.assertFalse(len(self.mesgraph.type_two_errors)>0)

  def testCheckTypeTwoError(self):
    if IGNORE_TEST:
      return
    mesgraph2 = MESGraph(self.simple2)
    mesgraph2.processUniUniReaction(self.simple2.getReaction(REACTION1))
    mesgraph2.processMultiUniReaction(self.simple2.getReaction(REACTION2))
    mesgraph2.processMultiUniReaction(self.simple2.getReaction(REACTION3))
    self.assertTrue(mesgraph2.checkTypeTwoError())
    self.assertFalse(len(mesgraph2.type_one_errors)>0)
    self.assertTrue(len(mesgraph2.type_two_errors)>0)

  def testAnalyze(self):
    if IGNORE_TEST:
      return
    mesgraph1 = MESGraph(self.simple)
    mesgraph1.analyze(self.simple.reactions)
    self.assertEqual(len(mesgraph1.nodes), FINAL_NODES)
    self.assertEqual(len(mesgraph1.edges), FINAL_EDGES)
    self.assertTrue(len(mesgraph1.type_one_errors)>0)
    self.assertFalse(len(mesgraph1.type_two_errors)>0)
    #
    mesgraph2 = MESGraph(self.simple2)
    mesgraph2.analyze(self.simple2.reactions)
    self.assertTrue(len(mesgraph2.type_one_errors)>0)
    self.assertTrue(len(mesgraph2.type_two_errors)>0)
    #
    mesgraph3 = MESGraph(self.simple3)
    mesgraph3.analyze(self.simple3.reactions) 
    self.assertTrue(len(mesgraph3.type_three_errors)>0) 
    #
    mesgraph4 = MESGraph(self.simple4)
    mesgraph4.analyze(self.simple4.reactions) 
    self.assertTrue(len(mesgraph4.type_four_errors)>0)  
    #
    # mesgraph5 = MESGraph(self.simple5)
    # mesgraph5.analyze(self.simple5.reactions) 
    # dih = mesgraph5.getNode(self.simple5.getMolecule(DIH))
    # din = mesgraph5.getNode(self.simple5.getMolecule(DIN))
    # self.assertTrue(mesgraph5.has_edge(dih, din))  
    # self.assertTrue(mesgraph5.has_edge(din, dih)) 
    # self.assertEqual(len(mesgraph5.type_five_errors), 1)
    #   
    mesgraph6 = MESGraph(self.simple6)
    mesgraph6.analyze(self.simple6.reactions) 
    total_errors = len(mesgraph6.type_one_errors) + \
                   len(mesgraph6.type_two_errors) + \
                   len(mesgraph6.type_three_errors) + \
                   len(mesgraph6.type_four_errors) +\
                   len(mesgraph6.type_five_errors) 
    self.assertTrue(total_errors==0)
Exemplo n.º 4
0
class TestGAMESReport(unittest.TestCase):
    def setUp(self):
        self.simple1 = SimpleSBML()
        self.simple2 = SimpleSBML()
        self.simple3 = SimpleSBML()
        self.simple4 = SimpleSBML()
        # BIOMD0000000248 - canceling_error
        self.simple1.initialize(cn.TEST_FILE_GAMESREPORT1)
        # BIOMD0000000007 - Type I error
        self.simple2.initialize(cn.TEST_FILE_GAMESREPORT2)
        # BIOMD0000000018 - Type II error
        self.simple3.initialize(cn.TEST_FILE_GAMES_PP2)
        # BIOMD0000000167 - Echelon, Type III error
        self.simple4.initialize(cn.TEST_FILE_GAMESREPORT3)

    def testReportCancelingError(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple1)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        report, error_num = gr.reportCancelingError(m.canceling_errors,
                                                    explain_details=True)
        extended_report = NULL_STR
        extended_report = extended_report + "We detected a mass imbalance\n"
        extended_report = extended_report + ": OxidativePhosphorylation: CTtis -> \n\n"
        extended_report = extended_report + "from the following reaction isolation set:\n\n"
        extended_report = extended_report + "1. OxidativePhosphorylation: 6.00 ADP + CTtis -> 6.00 ATP\n"
        extended_report = extended_report + "2. ATPase: ATP -> ADP\n"
        extended_report = extended_report + "*ATP and ADP have the same mass according to the above reaction\n"
        extended_report = extended_report + "\n%s%s\n" % (PARAGRAPH_DIVIDER,
                                                          PARAGRAPH_DIVIDER)
        extended_report = extended_report + "\n%s\n" % REPORT_DIVIDER
        self.assertEqual(extended_report, report)
        self.assertEqual(error_num, [2])

    def testGetMoleculeEqualityPath(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple2)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        som = m.getNode(self.simple2.getMolecule(G2K))
        equality_path = gr.getMoleculeEqualityPath(som, G2K, PG2R)
        self.assertTrue(len(equality_path) == 2)
        self.assertEqual(type(equality_path[0]), cn.PathComponents)
        self.assertEqual(equality_path[0].node1, G2K)
        self.assertEqual(equality_path[0].reactions, [CDC2PHOS])
        self.assertEqual(equality_path[1].node2, PG2R)
        self.assertEqual(equality_path[1].reactions, [RUM1DEGINPG2R])

    def testGetMoleculeEqualityPathReport(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple2)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        count, report1 = gr.getMoleculeEqualityPathReport(
            G2K, PG2R, 0, explain_details=False)
        self.assertEqual(count, 2)
        self.assertEqual(
            report1,
            "1. Cdc2Phos: G2K -> PG2\n2. Rum1DegInPG2R: PG2R -> PG2\n")
        count, report2 = gr.getMoleculeEqualityPathReport(G2K,
                                                          PG2R,
                                                          0,
                                                          explain_details=True)
        self.assertEqual(count, 2)
        self.assertEqual(
            report2,
            "\nG2K = PG2 by reaction(s):\n1. Cdc2Phos: G2K -> PG2\n\nPG2 = PG2R by reaction(s):\n2. Rum1DegInPG2R: PG2R -> PG2\n"
        )

    def testGetMoleculeInequalityPathReport(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple2)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        count, report1 = gr.getMoleculeInequalityPathReport(
            G2K, PG2R, ["G2R_Creation"], 0, explain_details=False)
        self.assertEqual(count, 1)
        self.assertEqual(report1, "1. G2R_Creation: G2K + R -> G2R\n")
        count, report2 = gr.getMoleculeInequalityPathReport(
            G2K, PG2R, ["G2R_Creation"], 0, explain_details=True)
        self.assertEqual(count, 1)
        self.assertEqual(
            report2,
            "G2K < PG2R by reaction(s):\n1. G2R_Creation: G2K + R -> G2R\n")

    def testReportTypeOneError(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple2)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        error = [
            cn.PathComponents(node1=G2K, node2=G2R, reactions=[G2R_CREATION])
        ]
        report, error_num = gr.reportTypeOneError(error, explain_details=True)
        self.assertEqual(error_num, [2])
        extended_report = NULL_STR
        extended_report = extended_report + "\nG2K = G2R by reaction(s):\n1. Rum1DegInG2R: G2R -> G2K\n\n"
        extended_report = extended_report + "However, G2K < G2R by reaction(s):\n2. G2R_Creation: G2K + R -> G2R\n\n"
        extended_report = extended_report + "\n----------------------------------------------------------------------\n\n"
        extended_report = extended_report + "\n\n**********************************************************************\n\n"
        self.assertEqual(report, extended_report)

    def testReportTypeTwoError(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple3)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        som1 = m.getNode(self.simple3.getMolecule(CH3FH4))
        som2 = m.getNode(self.simple3.getMolecule(FH4))
        error = [[som1, som2]]
        report, error_num = gr.reportTypeTwoError(error, explain_details=True)
        self.assertEqual(error_num, [5])
        LOC_START = 241
        extended_report = NULL_STR
        extended_report = extended_report + "{CH3FH4} < {CH2FH4=FFH2=FH2f=FH4} < {CH3FH4}\n\n"
        extended_report = extended_report + "This indicates a mass conflict between reactions.\n"
        extended_report = extended_report + "%s%s\n" % (PARAGRAPH_DIVIDER,
                                                        PARAGRAPH_DIVIDER)
        self.assertEqual(report[-LOC_START:], extended_report)

    def testConvertOperationSeriesToReactionOperations(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        op = pd.Series([1.0, 0.5, 0.0],
                       index=[
                           STATPHOSPHORYLATION, PSTATDIMERISATION,
                           PSTATDIMERISATIONNUC
                       ])
        ro = gr.convertOperationSeriesToReactionOperations(op)
        self.assertEqual(len(ro), 2)
        self.assertEqual(ro[0].reaction, STATPHOSPHORYLATION)
        self.assertEqual(ro[0].operation, 1.0)
        self.assertEqual(ro[1].reaction, PSTATDIMERISATION)
        self.assertEqual(ro[1].operation, 0.5)

    def testGetOperationMatrix(self):
        if IGNORE_TEST:
            return
        m1 = GAMES_PP(self.simple1)
        m1.analyze(error_details=False)
        gr1 = GAMESReport(m1)
        self.assertTrue(gr1.getOperationMatrix() is None)
        m4 = GAMES_PP(self.simple4)
        m4.analyze(error_details=False)
        gr4 = GAMESReport(m4)
        op_mat = gr4.getOperationMatrix()
        self.assertEqual(op_mat.loc[STATPHOSPHORYLATION, STATPHOSPHORYLATION],
                         1.0)
        self.assertEqual(op_mat.loc[PSTATDIMERISATION, PSTATDIMERISATION], 1.0)
        self.assertEqual(
            op_mat.loc[PSTATDIMERISATIONNUC, PSTATDIMERISATIONNUC], 1.0)
        self.assertEqual(op_mat.loc[PSTATDIMERISATIONNUC, STATPHOSPHORYLATION],
                         0.0)
        self.assertEqual(op_mat.loc[STATPHOSPHORYLATION, PSTATDIMERISATIONNUC],
                         -0.5)

    def testGetResultingSeries(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        resulting_series = gr.getResultingSeries(STATPHOSPHORYLATION)
        print(resulting_series)
        self.assertEqual(resulting_series["{" + SPECIES_TEST + "}"], 1.0)
        self.assertEqual(resulting_series["{" + PSTAT_SOL + "}"], 0.0)
        self.assertEqual(
            resulting_series[m.getNode(
                m.simple.getMolecule(PSTATDIMER_NUC)).identifier], 0.0)
        self.assertEqual(
            resulting_series[m.getNode(
                m.simple.getMolecule(PSTAT_NUC)).identifier], 0.0)

    def testGetOperationStoichiometryMatrix(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        op = pd.Series([1.0, 0.5, 0.0],
                       index=[
                           STATPHOSPHORYLATION, PSTATDIMERISATION,
                           PSTATDIMERISATIONNUC
                       ])
        ro = gr.convertOperationSeriesToReactionOperations(op)
        osm = gr.getOperationStoichiometryMatrix(ro)
        self.assertEqual(osm.loc[SPECIES_TEST, STATPHOSPHORYLATION], 1.0)
        self.assertEqual(osm.loc[SPECIES_TEST, PSTATDIMERISATION], 0.0)
        self.assertEqual(osm.loc[PSTAT_SOL, STATPHOSPHORYLATION], 1.0)
        self.assertEqual(osm.loc[PSTAT_SOL, PSTATDIMERISATION], -2.0)

    def testGeInferredReaction(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        op = pd.Series([1.0, 0.5, 0.0],
                       index=[
                           STATPHOSPHORYLATION, PSTATDIMERISATION,
                           PSTATDIMERISATIONNUC
                       ])
        ro = gr.convertOperationSeriesToReactionOperations(op)
        inferred_reaction = gr.getInferredReaction(ro)
        self.assertEqual(len(inferred_reaction.reactants), 1)
        self.assertEqual(len(inferred_reaction.products), 2)
        self.assertEqual(inferred_reaction.reactants[0].molecule.name,
                         STAT_SOL)
        self.assertTrue(inferred_reaction.products[0].molecule.name in
                        {PSTATDIMER_SOL, SPECIES_TEST})
        self.assertTrue(inferred_reaction.products[1].molecule.name in
                        {PSTATDIMER_SOL, SPECIES_TEST})
        self.assertEqual(inferred_reaction.reactants[0].stoichiometry, 1.0)
        self.assertEqual({p.stoichiometry
                          for p in inferred_reaction.products}, {0.5, 1.0})

    def testReportReactionsInSOM(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        som = m.getNode(m.simple.getMolecule(PSTATDIMER_NUC))
        report, error_num = gr.reportReactionsInSOM(som, 0)
        common_part = "1. PstatDimer__import: PstatDimer_sol -> PstatDimer_nuc\n"
        self.assertEqual(error_num, 1)
        self.assertTrue(report == common_part)

    def testReportEchelonError(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        report, error_num = gr.reportEchelonError(m.echelon_errors,
                                                  explain_details=True)
        self.assertEqual(error_num, [3])
        extended_report = NULL_STR
        extended_report = extended_report + "will result in empty reactant with zero mass:\n\n:  -> {species_test}\n\n"
        extended_report = extended_report + "\n----------------------------------------------------------------------\n"
        extended_report = extended_report + "\n----------------------------------------------------------------------\n\n"
        extended_report = extended_report + "\n\n**********************************************************************\n\n"
        self.assertEqual(report[-288:], extended_report)

    def testReportTypeThreeError(self):
        if IGNORE_TEST:
            return
        m = GAMES_PP(self.simple4)
        m.analyze(error_details=False)
        gr = GAMESReport(m)
        report, error_num = gr.reportTypeThreeError(m.type_three_errors,
                                                    explain_details=True)
        self.assertEqual(error_num, [3])
        pseudo_inequality_report = NULL_STR
        pseudo_inequality_report = pseudo_inequality_report + "6. statPhosphorylation: stat_sol -> Pstat_sol + species_test\n"
        pseudo_inequality_report = pseudo_inequality_report + "(pseudo 6.) statPhosphorylation: {Pstat_nuc=stat_nuc=stat_sol} -> "
        pseudo_inequality_report1 = pseudo_inequality_report + "{species_test} + {Pstat_sol}"
        pseudo_inequality_report2 = pseudo_inequality_report + "{Pstat_sol} + {species_test}"
        inference_report1 = "the masses of {Pstat_sol} and {Pstat_nuc=stat_nuc=stat_sol} are unequal."
        inference_report2 = "the masses of {Pstat_nuc=stat_nuc=stat_sol} and {Pstat_sol} are unequal."
        self.assertTrue(report[-460:-305] == pseudo_inequality_report1
                        or report[-460:-305] == pseudo_inequality_report2)
        self.assertTrue(report[-293:-221] == inference_report1
                        or report[-293:-221] == inference_report2)