Exemplo n.º 1
0
    def testCopyExisting(self):
        if IGNORE_TEST:
            return
        timeseries = NamedTimeseries(timeseries=self.timeseries)

        #
        def checkVector(attribute):
            length = len(self.timeseries.__getattribute__(attribute))
            trues = [
                timeseries.__getattribute__(attribute)[k] ==
                self.timeseries.__getattribute__(attribute)[k]
                for k in range(length)
            ]
            self.assertTrue(all(trues))

        def checkMatrix(attribute):
            trues = []
            for rowIdx, row in enumerate(
                    timeseries.__getattribute__(attribute)):
                for colIdx, val in enumerate(row):
                    trues.append(val == self.timeseries.__getattribute__(
                        attribute)[rowIdx, colIdx])
            self.assertTrue(all(trues))

        #
        for variable in ["start", "end"]:
            self.assertEqual(timeseries.__getattribute__(variable),
                             self.timeseries.__getattribute__(variable))
        for variable in ["colnames"]:
            checkVector(variable)
        for variable in ["values"]:
            checkMatrix(variable)
Exemplo n.º 2
0
class TestNamedTimeseries(unittest.TestCase):
    def setUp(self):
        self.timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH)
        self.model = te.loada(ANTIMONY_MODEL)

    def tearDown(self):
        if os.path.isfile(TEMP_FILE):
            os.remove(TEMP_FILE)

    def testConstructor1(self):
        if IGNORE_TEST:
            return
        self.assertGreater(len(self.timeseries.values), 0)
        # colnames doesn't include TIME
        self.assertEqual(len(self.timeseries.colnames),
                         np.shape(self.timeseries.values)[1] - 1)
        #
        newTS = self.timeseries.copy(isInitialize=True)
        self.assertEqual(np.sum(newTS[self.timeseries.colnames[0]]), 0)

    def testConstructor2(self):
        if IGNORE_TEST:
            return
        COLNAMES = [TIME, "S1", "S2"]

        def test(timeseries, colnames=COLNAMES):
            for name in colnames:
                self.assertTrue(
                    np.isclose(sum(timeseries[name] - self.timeseries[name]),
                               0))

        #
        newTS = NamedTimeseries(colnames=COLNAMES,
                                array=self.timeseries[COLNAMES])
        test(newTS)
        # Check can use different cases for TIME
        newTS = NamedTimeseries(colnames=["Time", "S1", "S2"],
                                array=self.timeseries[COLNAMES])
        test(newTS)

    def testConstructorNamedArray(self):
        if IGNORE_TEST:
            return
        namedArray = self.model.simulate(0, 100, 30)
        ts = NamedTimeseries(namedArray=namedArray)
        self.assertTrue(
            namedTimeseries.arrayEquals(namedArray.flatten(),
                                        ts.values.flatten()))

    def testSizeof(self):
        if IGNORE_TEST:
            return
        self.assertEqual(len(self.timeseries), LENGTH)

    def testGetitem(self):
        if IGNORE_TEST:
            return
        times = self.timeseries[TIME]
        # Access time column with different case
        refs = ["TiMe", "S1"]
        self.assertTrue(
            namedTimeseries.arrayEquals(self.timeseries[refs],
                                        self.timeseries[refs]))
        self.assertTrue(
            namedTimeseries.arrayEquals(self.timeseries[TIME],
                                        self.timeseries["TimE"]))
        self.assertTrue(
            namedTimeseries.arrayEquals(self.timeseries[TIME],
                                        self.timeseries["TimE"]))
        self.assertEqual(len(times), len(self.timeseries))
        self.assertEqual(min(times), self.timeseries.start)
        self.assertEqual(max(times), self.timeseries.end)
        # Get multiple values at once
        values = self.timeseries[self.timeseries.colnames]
        trues = np.array([
            v1 == v2 for v1, v2 in zip(values, self.timeseries.values[:, 1:])
        ])
        self.assertTrue(all(trues.flatten()))

    def testMissingData(self):
        if IGNORE_TEST:
            return
        with self.assertRaises(ValueError):
            timeseries = NamedTimeseries(csvPath=TEST_BAD_DATA_PATH)

    def testCopyExisting(self):
        if IGNORE_TEST:
            return
        timeseries = NamedTimeseries(timeseries=self.timeseries)

        #
        def checkVector(attribute):
            length = len(self.timeseries.__getattribute__(attribute))
            trues = [
                timeseries.__getattribute__(attribute)[k] ==
                self.timeseries.__getattribute__(attribute)[k]
                for k in range(length)
            ]
            self.assertTrue(all(trues))

        def checkMatrix(attribute):
            trues = []
            for rowIdx, row in enumerate(
                    timeseries.__getattribute__(attribute)):
                for colIdx, val in enumerate(row):
                    trues.append(val == self.timeseries.__getattribute__(
                        attribute)[rowIdx, colIdx])
            self.assertTrue(all(trues))

        #
        for variable in ["start", "end"]:
            self.assertEqual(timeseries.__getattribute__(variable),
                             self.timeseries.__getattribute__(variable))
        for variable in ["colnames"]:
            checkVector(variable)
        for variable in ["values"]:
            checkMatrix(variable)

    def testFlattenValues(self):
        if IGNORE_TEST:
            return
        values = self.timeseries.flatten()
        self.assertTrue(
            np.isclose(sum(values - self.timeseries.values[:, 1:].flatten()),
                       0))

    def testSelectTimes(self):
        if IGNORE_TEST:
            return
        selectorFunction = lambda t: t > 2
        array = self.timeseries.selectTimes(selectorFunction)
        self.assertLess(len(array), len(self.timeseries))

    def testMkNamedTimeseries(self):
        if IGNORE_TEST:
            return
        # Create a new time series that subsets the old one
        colnames = ["time", "S1", "S2"]
        newTS = namedTimeseries.mkNamedTimeseries(colnames,
                                                  self.timeseries[colnames])
        self.assertEqual(len(self.timeseries), len(newTS))
        # Create a new timeseries with a subset of times
        array = self.timeseries.selectTimes(lambda t: t > 2)
        newTS = namedTimeseries.mkNamedTimeseries(self.timeseries.allColnames,
                                                  array)
        self.assertGreater(len(self.timeseries), len(newTS))
        #
        ts = mkNamedTimeseries(self.timeseries)
        self.assertTrue(self.timeseries.equals(ts))
        #
        ts = mkNamedTimeseries(TEST_DATA_PATH)
        self.assertTrue(self.timeseries.equals(ts))
        #
        with self.assertRaises(ValueError):
            ts = mkNamedTimeseries(3)

    def testToPandas(self):
        if IGNORE_TEST:
            return
        df = self.timeseries.to_dataframe()
        timeseries = NamedTimeseries(dataframe=df)
        diff = set(df.columns).symmetric_difference(timeseries.colnames)
        self.assertEqual(len(diff), 0)
        total = sum(timeseries.values.flatten() -
                    self.timeseries.values.flatten())
        self.assertTrue(np.isclose(total, 0))

    def testArrayEquals(self):
        if IGNORE_TEST:
            return
        arr1 = np.array([1, 2, 3, 4])
        arr1 = np.reshape(arr1, (2, 2))
        self.assertTrue(namedTimeseries.arrayEquals(arr1, arr1))
        arr2 = 1.0001 * arr1
        self.assertFalse(namedTimeseries.arrayEquals(arr1, arr2))

    def testEquals(self):
        if IGNORE_TEST:
            return
        self.assertTrue(self.timeseries.equals(self.timeseries))
        newTS = self.timeseries.copy()
        newTS["S1"] = -1
        self.assertFalse(self.timeseries.equals(newTS))

    def testCopy(self):
        if IGNORE_TEST:
            return
        ts2 = self.timeseries.copy()
        self.assertTrue(self.timeseries.equals(ts2))

    def testSetitem(self):
        if IGNORE_TEST:
            return
        self.timeseries["S1"] = self.timeseries["S2"]
        self.assertTrue(
            namedTimeseries.arrayEquals(self.timeseries["S1"],
                                        self.timeseries["S2"]))
        value = -20
        self.timeseries["S19"] = value
        self.assertEqual(self.timeseries["S19"].sum(),
                         len(self.timeseries) * value)

    def testGetitemRows(self):
        if IGNORE_TEST:
            return
        start = 1
        stop = 3
        ts1 = self.timeseries[start:stop]
        self.assertTrue(isinstance(ts1, NamedTimeseries))
        self.assertEqual(len(ts1), stop - start)
        #
        ts2 = self.timeseries[[1, 2]]
        self.assertTrue(ts1.equals(ts2))
        #
        ts3 = self.timeseries[1]
        self.assertEqual(np.shape(ts3.values), (1, len(ts2.allColnames)))

    def testExamples(self):
        if IGNORE_TEST:
            return
        # Create from file
        timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH)
        # NamedTimeseries can use len function
        length = len(timeseries)  # number of rows
        # Extract the numpy array values using indexing
        timeValues = timeseries["time"]
        s1Values = timeseries["S1"]
        # Get the start and end times
        startTime = timeseries.start
        endTime = timeseries.end
        # Create a new time series that subsets the variables of the old one
        colnames = ["time", "S1", "S2"]
        newTS = mkNamedTimeseries(colnames, timeseries[colnames])
        # Create a new timeseries that excludes time 0
        ts2 = timeseries[1:]
        # Create a new column variable
        timeseries["S8"] = timeseries["time"]**2 + 3 * timeseries["S1"]
        timeseries["S9"] = 10  # Assign a constant to all rows

    def testDelitem(self):
        if IGNORE_TEST:
            return
        ts1 = self.timeseries.copy()
        del ts1["S1"]
        stg = str(ts1)
        self.assertEqual(len(ts1), len(self.timeseries))
        self.assertEqual(len(ts1.colnames) + 1, len(self.timeseries.colnames))

    def testToCsv(self):
        if IGNORE_TEST:
            return
        self.timeseries.to_csv(TEMP_FILE)
        self.assertTrue(os.path.isfile(TEMP_FILE))

    def testConcatenateColumns(self):
        if IGNORE_TEST:
            return
        ts = self.timeseries.concatenateColumns(self.timeseries)
        newNames = ["%s_" % c for c in self.timeseries.colnames]
        self.assertTrue(
            namedTimeseries.arrayEquals(
                ts[newNames], self.timeseries[self.timeseries.colnames]))
        self.assertEqual(len(ts), len(self.timeseries))
        self.assertTrue(
            namedTimeseries.arrayEquals(ts[TIME], self.timeseries[TIME]))
        #
        ts = self.timeseries.concatenateColumns(
            [self.timeseries, self.timeseries])
        self.assertEqual(3 * len(self.timeseries.colnames), len(ts.colnames))

    def testConcatenateRows(self):
        if IGNORE_TEST:
            return
        ts = self.timeseries.concatenateRows(self.timeseries)
        diff = set(ts.colnames).symmetric_difference(self.timeseries.colnames)
        self.assertEqual(len(diff), 0)
        length = len(self.timeseries)
        ts1 = ts[length:]
        self.assertTrue(self.timeseries.equals(ts1))
        #
        ts = self.timeseries.concatenateRows(
            [self.timeseries, self.timeseries])
        self.assertEqual(3 * len(self.timeseries), len(ts))

    def testSubsetColumns(self):
        if IGNORE_TEST:
            return
        ts = self.timeseries.concatenateColumns(self.timeseries)
        ts1 = ts.subsetColumns(self.timeseries.colnames)
        self.assertTrue(self.timeseries.equals(ts1))

    def testGetTimes(self):
        if IGNORE_TEST:
            return
        SIZE = 10
        VALUE = "values"
        TIMES = np.array(range(SIZE))

        def test(values, reference):
            df = pd.DataFrame({TIME: TIMES, VALUE: values})
            ts = NamedTimeseries(dataframe=df)
            results = ts.getTimesForValue(VALUE, reference)
            for time in results:
                idx1 = int(time)
                idx2 = idx1 + 1
                small = min(ts[VALUE][idx1], ts[VALUE][idx2])
                large = max(ts[VALUE][idx1], ts[VALUE][idx2])
                self.assertLessEqual(small, reference)
                self.assertGreaterEqual(large, reference)

        #
        values = (TIMES - 5)**2
        test(values, 10)  # 2 times
        test(-values, 5)  # Single maxk

    def testRpickleInterface(self):
        if IGNORE_TEST:
            return
        serialization = rpickle.Serialization(self.timeseries)
        timeseries = serialization.deserialize()
        self.assertTrue(timeseries.equals(self.timeseries))

    def testRename(self):
        if IGNORE_TEST:
            return
        NEW_NAME = "T1"
        OLD_NAME = "S1"
        newTimeseries = self.timeseries.rename(OLD_NAME, NEW_NAME)
        self.assertTrue(NEW_NAME in newTimeseries.colnames)
        self.assertFalse(OLD_NAME in newTimeseries.colnames)
        del newTimeseries[NEW_NAME]
        del self.timeseries[OLD_NAME]
        self.assertTrue(newTimeseries.equals(self.timeseries))