Exemplo n.º 1
0
def bruteforce_repeated_k(args, dataList):

    p, q, g, y = args

    for i in range(0, len(dataList)):
        for j in range(i + 1, len(dataList)):

            try:
                msg1, s1, r1, m1 = dataList[i]
                msg2, s2, r2, m2 = dataList[j]

                num = int(m1, 16) - int(m2, 16)
                tmpDivisor = int(s1) - int(s2)
                div = modinv(tmpDivisor, q)

                k = (num * div) % q

                x = ((int(s1) * k - int(sha1(msg1), 16)) *
                     modinv(int(r1), q)) % q

                assert y == modexp(g, x, p)

                if sha1(hex(x)
                        [2:-1]) == "ca8f6f7c66fa362d40760d135b763eb8527d3d52":

                    return (k, x)

            except:
                pass

    print "[*] No k was repeated (possibly)"
    return (0, 0)
Exemplo n.º 2
0
    def check(self, signature, message):

        # check is like this: S^e == PAD(H(m))

        all = "\x00" + long_to_bytes(signature ** 3)

        #verify padding, if not return 0
        if all[:3] == "\x00\x01\xff":
            ind = 3
            while all[ind] != "\x00":
                if all[ind] != "\xff":
                    return False
                ind += 1
            """
            # correct implementation checks for leftovers at the end

            ind += 35
            if len(all[ind:]) != 0:
                return False
            """
        else:
            return False

        #return whether hashes are the same
        recovered_hash = all.split("\x00")
        start = len(recovered_hash[1]) + 2 + 15
        recovered_hash = all[start:start+20].encode("hex")

        return sha1(message) == recovered_hash
Exemplo n.º 3
0
    def decrypt(self, data):

        hash = sha1(str(data))

        if hash in self.decrypted:
            return "[*] Error, hash already decrypted"

        self.decrypted.append(hash)
        return self.rsa.decrypt(data)
Exemplo n.º 4
0
def sign_DSA(p, q, g, x, message):

    k = random.randint(1, q - 1)
    r = modexp(g, k, p) % q
    s = (modinv(k, q) * (int(sha1(message), 16) + x * r)) % q

    if s == 0 or r == 0:
        s, r = sign_DSA(p, q, g)

    return [r, s]
Exemplo n.º 5
0
def check_DSA(signature, p, q, g, y, message):

    r, s = signature

    assert 0 < r < q
    assert 0 < s < q

    w = modinv(s, q) % q
    u1 = (int(sha1(message), 16) * w) % q
    u2 = (r * w) % q
    v = ((modexp(g, u1, p) * modexp(y, u2, p)) % p) % q

    return v == r
Exemplo n.º 6
0
def bruteforce_k(args, max):

    r, s, hash, q, check = args

    for k in xrange(max):

        x = ((s * k - hash) * modinv(r, q)) % q

        # if the hash wasn't given we could try this:
        # checking if y == modexp(g, x, p)

        if sha1(hex(x)[2:-1]) == "0954edd5e0afe5542a4adf012611a91912a3ec16":

            return (k, x)

    print "[*] No k found, tried {} possible values".format(k)
    return (0, 0)
Exemplo n.º 7
0
def DSA_from_k():
    m = """For those that envy a MC it can be hazardous to your health\nSo be friendly, a matter of life and death, just like a etch-a-sketch\n"""

    H = int(sha1(m), 16)
    q = 0xf4f47f05794b256174bba6e9b396a7707e563c5b
    y = 0x84ad4719d044495496a3201c8ff484feb45b962e7302e56a392aee4abab3e4bdebf2955b4736012f21a08084056b19bcd7fee56048e004e44984e2f411788efdc837a0d2e5abb7b555039fd243ac01f0fb2ed1dec568280ce678e931868d23eb095fde9d3779191b8c0299d6e07bbb283e6633451e535c45513b2d33c99ea17
    r = 548099063082341131477253921760299949438196259240
    s = 857042759984254168557880549501802188789837994940
    check = 0x0954edd5e0afe5542a4adf012611a91912a3ec16
    range = 2**16

    assert H == 0xd2d0714f014a9784047eaeccf956520045c45265

    k, x = bruteforce_k([r, s, H, q, check], range)

    print "[*] K recovery attack started!"
    print "[*] k recovered    :", k
    print "[*] private key (x):", x
Exemplo n.º 8
0
def BleichenbacherAttack():

    e = 3
    p, q = getCoprimes(e)
    oracle = BleichenbacherOracle(p, q, e)

    n = oracle.n
    msg = "hi mom"
    padded = PKCS15(sha1(msg), n, 'SHA-1')

    #extend the message to be 1024 bits / 256 bytes
    print "[*] Starting padding of message:"
    print "[*] Lenght of padded    :", len(padded)
    print "[*] Length of added hex :", len(("\x00"  * ((256 - len(padded)))))
    padded += ("\x00"  * ((256 - len(padded))))
    print "[*] Final length        :", len(padded)

    number = int(padded.encode("hex"), 16)
    signature = cubeRoot(number)

    print "[*] The Bleichenbacher Oracle says the signature is:", oracle.check(signature, msg)