Exemplo n.º 1
0
def window(MIN_LAG, MAX_LAG, STEP, STOCK_name, price, next_day):
    '''
  :Arguments:
      MIN_LAG :
        
      MAX_LAG :
        
      STEP :
        
      STOCK_index_ :
        
      price :
        
  :Return:
    
  '''

    #get the data we need
    data = loc.read_csv(STOCK_name + str('.csv'))
    #the stock class
    stock_data = stock(data)
    #get OHLC, HL_PCT, PCT_CHNG
    df_OHLC = pd.concat([stock_data.OHLC(), stock_data.HL_PCT()], axis=1)
    #listing...

    process_time(df_OHLC)
    #extract specific time features

    #forecastiing parameter
    Day_of_week = [x for x in df_OHLC.DayOfTheWeek.unique()]

    #forecast dates ahead minus holidays
    def filter_Mexico_holidays(df, nextday):
        '''
    :Arguments:
      df: dataframe
    :Nextday:
      datetime format
      
    :Return:
      List of filtered dates using US calender
    '''
        import holidays
        #holidays in Mexico
        us_holidays = holidays.Mexico()
        hol_dates = []
        dat_frac = list((pd.bdate_range(pd.to_datetime(df_OHLC.index[-1]),
                                        next_day)).date)
        #iterate using date index
        for ii in range(len(dat_frac)):
            print(dat_frac[ii])
            if isinstance(us_holidays.get(dat_frac[ii]), str):
                hol_dates.append(dat_frac[ii])

        if hol_dates == []:
            print('No holidays')
        else:
            for ii in hol_dates:
                print('Holiday present on {}'.format(ii))

        dat_frac = sorted(
            [x for x in set(dat_frac).difference(set(hol_dates))])[1:]
        return (dat_frac, hol_dates)

    print('*' * 30)
    print('Fininshed extracting holidays')

    dt_range, hol_dates = filter_Mexico_holidays(df_OHLC, next_day)
    trad_days = len(dt_range)

    #all series
    al_dt = list(df_OHLC.index) + list(dt_range)
    #lagged_time series
    forecast_window = pd.DataFrame(al_dt, columns=['timestamp'])
    forecast_window.set_index('timestamp', inplace=True)

    print('Forecast ahead dates created')
    '''
  Prrice shift
  '''

    print('Create laggs..')

    def lagg(param, df, t_days):
        '''
    :Arguments:
      :param:
        feature
      :df:
        dataframe
      :t_days:
        forecast window/days ahead
        
    :Return:
      values at time t and t+x where x = 1,...,n
      
    '''
        df_param_t = list(df[param])
        df_param_t_1 = list(df[param].shift(t_days))
        df_param_t_plus = list(df.ix[-t_days:, param])

        return df_param_t_1, df_param_t_plus

    '''
  HL_PCT shift
  '''
    #create laggs for every feature in stock i.e OHLC
    df_ = {}
    params = [price, 'HL_PCT', 'PCT_CHNG']
    '''create a loop here for forecasting each feature'''
    for ii in params:
        df_['df_{}_t_1'.format(ii)], df_['df_{}_t_plus'.format(ii)] = lagg(
            ii, df_OHLC, trad_days)

    #lagged
    for ii in df_['df_{}_t_plus'.format(params[0])]:
        df_['df_{}_t_1'.format(params[0])].append(ii)

    for ii in df_['df_{}_t_plus'.format(params[1])]:
        df_['df_{}_t_1'.format(params[1])].append(ii)

    for ii in df_['df_{}_t_plus'.format(params[2])]:
        df_['df_{}_t_1'.format(params[2])].append(ii)

    #create the forecast laggs
    for ii, val in df_.items():
        if len(val) > trad_days:
            #      if len(val) == len
            forecast_window['lagged_' + str('{}'.format(ii))] = val


#    else:
#      raise('Incorrect data setting.\nDate should be shifted forward..')
    forecast_window = forecast_window.dropna()

    #convert to stock class
    #Exponential laggs for each feature
    EWM_m = {}
    for w in forecast_window.columns:
        for ij in range(MIN_LAG, MAX_LAG, STEP):
            EWM_m['{}_{}'.format(w, ij)] = forecast_window[w].ewm(ij).mean()

    for p, q in EWM_m.items():
        forecast_window['{}'.format(p)] = q

    #delta time
    time_dt = pd.DataFrame({'timestamp': forecast_window.index})
    process_time(time_dt).set_index('timestamp', inplace=True)

    #filter weekends from data
    time_dt = time_dt.loc[time_dt.DayOfTheWeek.isin(Day_of_week)]
    #keep feature columns
    time_dt = time_dt.loc[:, [x for x in OHLC_features_]]
    forecast_window = pd.concat([forecast_window, time_dt], axis=1)

    return (forecast_window, trad_days, dt_range)
Exemplo n.º 2
0
    DATA_LIMIT = 400
    #--------RSI_SETTINGS------------------------
    LOWER_BOUND = 30
    UPPER_BOUND = 70
    #--------MACD SETTINGS-----------------------
    FAST = 12
    SLOW = 26
    SIGNAL = 9
    loc.set_path(path + 'DATASET')
    #-------get the data we need------------------
    STOK_list = ls_STOK()

    Signal_Gen = {}
    for ii in range(DATA_LIMIT):
        print('{}'.format(STOK_list[ii]))
        data = loc.read_csv('{}'.format(STOK_list[ii]) + str('.csv'))
        data.index = pd.to_datetime(data.index)
        #-----convert to the stock class--------------
        stock_data = stock(data)
        Fibo_SUP_RES_ = stock_data.fibonacci_pivot_point()
        df_RSI = RSI_signal(data,
                            PERIOD,
                            lw_bound=LOWER_BOUND,
                            up_bound=UPPER_BOUND)
        df_MACD = macd_crossOver(data, FAST, SLOW, SIGNAL)
        df_BB = bollinger_band_signal(data,
                                      PERIOD,
                                      deviation=DEVIATION,
                                      strategy=STRATEGY)
        #-----select strategy for saving-------------------
        if STRATEGY == '2' or STRATEGY == '3':
Exemplo n.º 3
0
        'wday_sin',  #sine of trading day
        'wday_cos',  #cosine of trading day
        'mday_sin',  #sine of days of the month
        'mday_cos',  #cosine of days of the month
        'yday_sin',  #sine of day of year
        'yday_cos',  #cosine of day of year
        'month_sin',  #sine of month
        'month_cos'
    ]  #cosine of month

    #set working directory
    loc.set_path('D:\\BITBUCKET_PROJECTS\\Forecasting 1.0\\DATASET')
    #stock list
    #  STOCK_list_ = ls_STOK()
    STOCK_NAME = 'ALSEA.MX'
    data = loc.read_csv('{}'.format(STOCK_NAME) + str('.csv'))

    #window
    forecast = {}
    #//Extract Forecast window
    for pr in price:
        forecast_window, trad_days, dt_range = window(MIN_LAG, MAX_LAG, STEP,
                                                      STOCK_NAME, pr, next_day)
        #train test
        X_train, X_test, Y_train, Y_test = Scale_train_test(
            forecast_window, trad_days)
        #yhat for all models
        Avg_price = Modeller(X_train, X_test, Y_train, Y_test, dt_range,
                             params, EPOCHS)

        forecast[pr] = list(Avg_price)
Exemplo n.º 4
0
def predict_OHLC(NXT_DAY):
  '''
  :Arguments:
    STOCKLIST: List of downloaded stock in the dataset folder
    NXTDAY: nextday to predict
    stock_data: stock class
    
  :Return:
    Next day Open, High, Low, Close for all stock
    
  '''
  #get ojects in the dataset folder and 
  #strip extension
  
  DIR_OBJ = os.listdir()
  STOCK_list_ = []
  
  for x in range(len(DIR_OBJ)):
    STOCK_list_.append(DIR_OBJ[x].strip('.csv'))
  
  MIN_LAG = 5
  MAX_LAG = 25
  STEP = 5
  
#  process_time(df_OHLC)
  
  OHLC_features_ = ['years', #trading year
                    'days', #trading days
                    'months', #months
                    'DayOfTheWeek', #days of week
                    'time_epoch', #time epoch
                    'wday_sin', #sine of trading day
                    'wday_cos', #cosine of trading day
                    'mday_sin', #sine of days of the month
                    'mday_cos', #cosine of days of the month
                    'yday_sin', #sine of day of year
                    'yday_cos', #cosine of day of year
                    'month_sin', #sine of month
                    'month_cos'] #cosine of month
  
 
  '''
  recall later
  dt_range = []
  for ii in range(1, window):
    if list(pd.to_datetime(df_OHLC.index[-1]) + pd.to_timedelta(np.arange(window+1), 'D'))[ii].dayofweek in Day_of_week:
      dt_range.append(list(pd.to_datetime(df_OHLC.index[-1]) + pd.to_timedelta(np.arange(window+1), 'D'))[ii])
    else:
      pass
  '''
  
  
  NXT_open_ = []
  NXT_high_ = []
  NXT_low_ = []
  NXT_close_ = []
  
  for _i_ in range(len(STOCK_list_)):
    #get the data we need
    data = loc.read_csv(STOCK_list_[_i_] + str('.csv'))
    #the stock class
    stock_data = stock(data)
    #get OHLC
    df_OHLC = stock_data.OHLC()
  
    '''listing...'''
    
    process_time(df_OHLC)
    #forecastiing parameter
    Day_of_week = [x for x in df_OHLC.DayOfTheWeek.unique()]
    
    #NXT_DAY = datetime(2018, 12, 21)
    dt_range = pd.bdate_range(pd.to_datetime(df_OHLC.index[-1]), NXT_DAY)[1:]
    
    trad_days = len(dt_range)
    
    #all series
#    df_dt = list(df_OHLC.index)
#    for ii in list(dt_range):
#      df_dt.append(list(ii))
    al_dt = list(df_OHLC.index) + list(dt_range)
    #lagged_time series
    forecast_window = pd.DataFrame({'timestamp': al_dt})
    forecast_window.set_index('timestamp', inplace = True)
  
    '''
    Get Open High Low Close
    '''
    
    for _ix in df_OHLC.columns:
      '''extract columns to forecast'''
      
      df_t = list(df_OHLC[_ix])
      df_t_1 = list(df_OHLC[_ix].shift(trad_days))
      df_t_plus = list(df_OHLC[_ix][-trad_days:])
    
      #lagged
      for w in df_t_plus:
        df_t_1.append(w)
      
      forecast_window['lagged_'+str('{}days'.format(str('t')))] = df_t_1
      forecast_window = forecast_window.dropna()
      
      #convert to stock class
      for ij in range(MIN_LAG, MAX_LAG, STEP):
        forecast_window['lagged_t_'+str('{}'.format(ij))] = forecast_window.lagged_tdays.ewm(ij).mean()
      
      #delta time
      time_dt = pd.DataFrame({'timestamp': forecast_window.index})
      process_time(time_dt).set_index('timestamp', inplace = True)
      
      #filter weekends from data
      time_dt = time_dt.loc[time_dt.DayOfTheWeek.isin(Day_of_week)]
      #keep feature columns
      time_dt = time_dt.loc[:, [x for x in OHLC_features_]]
      forecast_window = pd.concat([forecast_window, time_dt], axis = 1)
      
      
      #standardize
      X_transform = pd.DataFrame(StandardScaler().fit_transform(forecast_window),
                                 columns = [x for x in forecast_window.columns])
      
      #train test splits
      X_train = X_transform.iloc[:-trad_days, 1:]
      Y_train = forecast_window.lagged_tdays[:-trad_days].values
      X_test = X_transform.iloc[-trad_days:, 1:]
      Y_test = forecast_window.lagged_tdays[-trad_days:].values
      
      #model
      Regress = RandomForestRegressor(max_depth = 20, random_state = 0,
                                      n_estimators = 100)
      #fit model
      Regress.fit(X_train, Y_train)
      #predict feature
      Predic_ = Regress.predict(X_test)
      
      if _ix == 'Open':
        NXT_open_.append(Predic_)
      elif _ix == 'High':
        NXT_high_.append(Predic_)
      elif _ix == 'Low':
        NXT_low_.append(Predic_)
      elif _ix == 'Close':
        NXT_close_.append(Predic_)
        
  return pd.DataFrame({'Stocks': STOCK_list_, 'Next_day_Open': NXT_open_,
                            'Next_day_High': NXT_high_, 'Next_day_Low': NXT_low_,
                            'Next_day_Close': NXT_close_})
Exemplo n.º 5
0
    DEVIATION = MULTIPLIER = 2
    PERIOD = 20
    #--------RSI_SETTINGS------------------------
    LOWER_BOUND = 30
    UPPER_BOUND = 70
    MIDLINE = 0
    FILLCOLOR = 'skyblue'
    #--------MACD SETTINGS-----------------------
    FAST = 12
    SLOW = 26
    SIGNAL = 9
    loc.set_path(path + 'DATASET')
    #-------get the data we need------------------
    STOCK_NAME = 'MSFT.MX'
    STOCK_list_ = ls_STOK()
    data = loc.read_csv(STOCK_NAME + str('.csv'))
    data.index = pd.to_datetime(data.index)
    #-----convert to the stock class--------------
    stock_data = stock(data)
    Fibo_SUP_RES_ = stock_data.fibonacci_pivot_point()
    df_ketner = stock_data.Keltner_channel(data, PERIOD, PERIOD, MULTIPLIER)
    df_RSI = RSI_signal(data,
                        PERIOD,
                        lw_bound=LOWER_BOUND,
                        up_bound=UPPER_BOUND)
    df_MACD = macd_crossOver(data, FAST, SLOW, SIGNAL)
    df_BB = bollinger_band_signal(data,
                                  PERIOD,
                                  deviation=DEVIATION,
                                  strategy=STRATEGY)