Exemplo n.º 1
0
def check_initial_state(problem):

    # get initial guess
    x_state_0, x_control_0, dt = problem.unpack(problem.guess)

    # make sure at least 2d column vector
    x_state_0 = atleast_2d_col(x_state_0)
    x_control_0 = atleast_2d_col(x_control_0)

    # check numbers of states
    if not len(x_state_0):
        problem.Nstate = 0
    else:
        problem.options.N = x_state_0.shape[0]
        problem.Nstate = x_state_0.shape[1]

    # check numbers of controls
    if not len(x_control_0):
        problem.Ncontrol = 0
    else:
        problem.options.N = x_control_0.shape[0]
        problem.Ncontrol = x_control_0.shape[1]

    # variable final time?
    if not dt:
        problem.variable_final_time = False
    else:
        problem.variable_final_time = True

    # total number of unknowns
    problem.Nvars = problem.Ncontrol + problem.Nstate

    return
Exemplo n.º 2
0
def check_initial_state(problem):

    # get initial guess
    x_state_0, x_control_0, dt = problem.unpack(problem.guess)

    # make sure at least 2d column vector
    x_state_0 = atleast_2d_col(x_state_0)
    x_control_0 = atleast_2d_col(x_control_0)

    # check numbers of states
    if not len(x_state_0):
        problem.Nstate = 0
    else:
        problem.options.N = x_state_0.shape[0]
        problem.Nstate = x_state_0.shape[1]

    # check numbers of controls
    if not len(x_control_0):
        problem.Ncontrol = 0
    else:
        problem.options.N = x_control_0.shape[0]
        problem.Ncontrol = x_control_0.shape[1]

    # variable final time?
    if not dt:
        problem.variable_final_time = False
    else:
        problem.variable_final_time = True

    # total number of unknowns
    problem.Nvars = problem.Ncontrol + problem.Nstate

    return
Exemplo n.º 3
0
 def compute_propulsion(self,propulsion_model,conditions,numerics):
     """ compute_propulsion()
         gets propulsion conditions
         
         Inputs - 
             propulsion_model - a callable that will recieve ...
             conditions         - passed directly to the propulsion model
         
         Outputs - 
             results - a data dictionary with ...
                 thrust_force   - a 3-column array with rows of total thrust force vectors
                     for each control point, in the body frame
                 fuel_mass_rate - the total fuel mass flow rate for each control point
                 thrust_power   - the total propulsion power for each control point
         
         Assumptions -
             +X out nose
             +Y out starboard wing
             +Z down
         
     """
     
     # for current propulsion models
     ## TODO: update propulsion modules
     
     N = self.numerics.n_control_points
     
     eta = conditions.propulsion.throttle[:,0]
     
     #state = Data()
     #state.q  = conditions.freestream.dynamic_pressure[:,0]
     #state.g0 = conditions.freestream.gravity[:,0]
     #state.V  = conditions.freestream.velocity[:,0]
     #state.M  = conditions.freestream.mach_number[:,0]
     #state.T  = conditions.freestream.temperature[:,0]
     #state.p  = conditions.freestream.pressure[:,0]
     
     F, mdot, P = propulsion_model(eta, conditions)
     
     F_vec = np.zeros([N,3])
     F_vec[:,0] = F[:]
     mdot = atleast_2d_col( mdot )
     P    = atleast_2d_col( P    )
     
     ## TODO ---
     ## call propulsion model
     #results = propulsion_model( conditions )
     
     ## unpack results
     #F    = results.thrust_force
     #mdot = atleast_2d_col( results.fuel_mass_rate )
     #P    = atleast_2d_col( results.thurst_power   )
     
     # pack conditions
     conditions.frames.body.thrust_force_vector[:,:] = F_vec[:,:]
     conditions.propulsion.fuel_mass_rate[:,0]       = mdot[:,0]
     conditions.energies.propulsion_power[:,0]      = P[:,0]
     
     return conditions
Exemplo n.º 4
0
def initialize_differentials_dimensionless(segment, state):

    # unpack
    numerics = state.numerics
    N = numerics.number_control_points
    discretization_method = numerics.discretization_method

    # get operators
    x, D, I = discretization_method(N, **numerics)
    x = atleast_2d_col(x)

    # pack
    numerics.dimensionless.control_points = x
    numerics.dimensionless.differentiate = D
    numerics.dimensionless.integrate = I

    return
Exemplo n.º 5
0
def initialize_differentials_dimensionless(segment, state):

    # unpack
    numerics = state.numerics
    N = numerics.number_control_points
    discretization_method = numerics.discretization_method

    # get operators
    x, D, I = discretization_method(N, **numerics)
    x = atleast_2d_col(x)

    # pack
    numerics.dimensionless.control_points = x
    numerics.dimensionless.differentiate = D
    numerics.dimensionless.integrate = I

    return
Exemplo n.º 6
0
 def initialize_differentials(self,numerics):
     """ Segment.initialize_differentials(numerics)
         initialize differentiation and integration operator matricies
         
         Inputs - 
             numerics - Data dictionary with fields:
                 dimensionless_time          - empty 2D array
                 differentiate_dimensionless - empty 2D array
                 integrate_dimensionless     - empty 2D array
                 discretization_method       - the method for calculating the above
                 n_control_points            - number of control points for operators
     
         Outputs:
             numerics - Data dictionary with fields:
                 dimensionless_time - time control points, non-dimensional, in range [0,1], column vector
                 differentiate_dimensionless - differention operation matrix
                 integrate_dimensionless - integration operation matrix
                 
                 
         Assumptions:
             operators are in non-dimensional time, with bounds [0,1]
             will call numerics.discretization_method(n_control_points,**numerics) to get operators
             
     """
     
     # unpack
     N                     = numerics.n_control_points
     discretization_method = numerics.discretization_method
     
     # get operators
     t,D,I = discretization_method(N,**numerics)
     t = atleast_2d_col(t)
     
     # pack
     numerics.dimensionless_time          = t
     numerics.differentiate_dimensionless = D
     numerics.integrate_dimensionless     = I
     
     return numerics
Exemplo n.º 7
0
    def compute_values(self,altitude,temperature_deviation = 0):

        """ Computes values from the International Standard Atmosphere

        Inputs:
            altitude     : geometric altitude (elevation) (m)
                           can be a float, list or 1D array of floats
            temperature_deviation :  delta_isa
         
        Outputs:
            list of conditions -
                pressure       : static pressure (Pa)
                temperature    : static temperature (K)
                density        : density (kg/m^3)
                speed_of_sound : speed of sound (m/s)
                dynamic_viscosity      : dynamic_viscosity (kg/m-s)
            
        Example:
            atmosphere = SUAVE.Attributes.Atmospheres.Earth.USStandard1976()
            atmosphere.ComputeValues(1000).pressure
          
        """

        # unpack
        zs   = altitude
        gas    = self.fluid_properties
        planet = self.planet
        grav   = self.planet.sea_level_gravity        
        Rad    = self.planet.mean_radius
        gamma  = gas.gas_specific_constant
        delta_isa = temperature_deviation
        
        # check properties
        if not gas == Air():
            warn('US Standard Atmosphere not using Air fluid properties')
        if not planet == Earth():
            warn('US Standard Atmosphere not using Earth planet properties')          
        
        # convert input if necessary
        zs = atleast_2d_col(zs)

        # get model altitude bounds
        zmin = self.breaks.altitude[0]
        zmax = self.breaks.altitude[-1]   
        
        # convert geometric to geopotential altitude
        zs = zs/(1 + zs/Rad)
        
        # check ranges
        if np.amin(zs) < zmin:
            print "Warning: altitude requested below minimum for this atmospheric model; returning values for h = -2.0 km"
            zs[zs < zmin] = zmin
        if np.amax(zs) > zmax:
            print "Warning: altitude requested above maximum for this atmospheric model; returning values for h = 86.0 km"   
            zs[zs > zmax] = zmax        

        # initialize return data
        zeros = np.zeros_like(zs)
        p     = zeros * 0.0
        T     = zeros * 0.0
        rho   = zeros * 0.0
        a     = zeros * 0.0
        mew   = zeros * 0.0
        z0    = zeros * 0.0
        T0    = zeros * 0.0
        p0    = zeros * 0.0
        alpha = zeros * 0.0
        
        # populate the altitude breaks
        # this uses >= and <= to capture both edges and because values should be the same at the edges
        for i in range( len(self.breaks.altitude)-1 ): 
            i_inside = (zs >= self.breaks.altitude[i]) & (zs <= self.breaks.altitude[i+1])
            z0[ i_inside ]    = self.breaks.altitude[i]
            T0[ i_inside ]    = self.breaks.temperature[i]
            p0[ i_inside ]    = self.breaks.pressure[i]
            alpha[ i_inside ] = -(self.breaks.temperature[i+1] - self.breaks.temperature[i])/ \
                                 (self.breaks.altitude[i+1]    - self.breaks.altitude[i])
        
        # interpolate the breaks
        dz = zs-z0
        i_isoth = (alpha == 0.)
        i_adiab = (alpha != 0.)
        p[i_isoth] = p0[i_isoth] * np.exp(-1.*dz[i_isoth]*grav/(gamma*T0[i_isoth]))
        p[i_adiab] = p0[i_adiab] * ( (1.-alpha[i_adiab]*dz[i_adiab]/T0[i_adiab]) **(1.*grav/(alpha[i_adiab]*gamma)) )
        
        T   = T0 - dz*alpha + delta_isa
        rho = gas.compute_density(T,p)
        a   = gas.compute_speed_of_sound(T)
        mew = gas.compute_absolute_viscosity(T)
        

                
        atmo_data = Conditions()
        atmo_data.expand_rows(zs.shape[0])
        atmo_data.pressure          = p
        atmo_data.temperature       = T
        atmo_data.density           = rho
        atmo_data.speed_of_sound    = a
        atmo_data.dynamic_viscosity = mew
        
        return atmo_data
Exemplo n.º 8
0
    def compute_values(self, altitude, temperature=288.15):
        """Computes atmospheric values.
    
        Assumptions:
        Constant temperature atmosphere
    
        Source:
        U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976
    
        Inputs:
        altitude                                 [m]
        temperature                              [K]

        Outputs:
        atmo_data.
          pressure                               [Pa]
          temperature                            [K]
          speed_of_sound                         [m/s]
          dynamic_viscosity                      [kg/(m*s)]
    
        Properties Used:
        self.
          fluid_properties.gas_specific_constant [J/(kg*K)]
          planet.sea_level_gravity               [m/s^2]
          planet.mean_radius                     [m]
          breaks.
            altitude                             [m]
            pressure                             [Pa]
        """

        # unpack
        zs = altitude
        gas = self.fluid_properties
        planet = self.planet
        grav = self.planet.sea_level_gravity
        Rad = self.planet.mean_radius
        gamma = gas.gas_specific_constant

        # check properties
        if not gas == Air():
            warn(
                'Constant_Temperature Atmosphere not using Air fluid properties'
            )
        if not planet == Earth():
            warn(
                'Constant_Temperature Atmosphere not using Earth planet properties'
            )

        # convert input if necessary
        zs = atleast_2d_col(zs)

        # get model altitude bounds
        zmin = self.breaks.altitude[0]
        zmax = self.breaks.altitude[-1]

        # convert geometric to geopotential altitude
        zs = zs / (1 + zs / Rad)

        # check ranges
        if np.amin(zs) < zmin:
            print "Warning: altitude requested below minimum for this atmospheric model; returning values for h = -2.0 km"
            zs[zs < zmin] = zmin
        if np.amax(zs) > zmax:
            print "Warning: altitude requested above maximum for this atmospheric model; returning values for h = 86.0 km"
            zs[zs > zmax] = zmax

        # initialize return data
        zeros = np.zeros_like(zs)
        p = zeros * 0.0
        T = zeros * 0.0
        rho = zeros * 0.0
        a = zeros * 0.0
        mew = zeros * 0.0
        z0 = zeros * 0.0
        T0 = zeros * 0.0
        p0 = zeros * 0.0
        alpha = zeros * 0.0

        # populate the altitude breaks
        # this uses >= and <= to capture both edges and because values should be the same at the edges
        for i in range(len(self.breaks.altitude) - 1):
            i_inside = (zs >= self.breaks.altitude[i]) & (
                zs <= self.breaks.altitude[i + 1])
            z0[i_inside] = self.breaks.altitude[i]
            T0[i_inside] = temperature
            p0[i_inside] = self.breaks.pressure[i]
            self.breaks.temperature[i + 1] = temperature
            alpha[ i_inside ] = -(temperature - temperature)/ \
                                 (self.breaks.altitude[i+1]    - self.breaks.altitude[i])

        # interpolate the breaks
        dz = zs - z0
        i_isoth = (alpha == 0.)

        p = p0 * np.exp(-1. * dz * grav / (gamma * T0))

        T = temperature
        rho = gas.compute_density(T, p)
        a = gas.compute_speed_of_sound(T)
        mew = gas.compute_absolute_viscosity(T)

        atmo_data = Conditions()
        atmo_data.expand_rows(zs.shape[0])
        atmo_data.pressure = p
        atmo_data.temperature = T
        atmo_data.density = rho
        atmo_data.speed_of_sound = a
        atmo_data.dynamic_viscosity = mew

        return atmo_data