Exemplo n.º 1
0
 def centerAndMomentOfInertia(self, conf = None):
     """
     :param conf: a configuration object, or None for the
                  current configuration
     :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
     :returns: the center of mass and the moment of inertia tensor
               in the given configuration
     """
     from Scientific.Geometry import delta
     offset = None
     universe = self.universe()
     if universe is not None:
         offset = universe.contiguousObjectOffset([self], conf)
     m = 0.
     mr = Vector(0.,0.,0.)
     t = Tensor(3*[3*[0.]])
     for a in self.atomIterator():
         ma = a._mass
         if offset is None:
             r = a.position(conf)
         else:
             r = a.position(conf)+offset[a]
         m += ma
         mr += ma*r
         t += ma*r.dyadicProduct(r)
     cm = mr/m
     t -= m*cm.dyadicProduct(cm)
     t = t.trace()*delta - t
     return cm, t
Exemplo n.º 2
0
 def centerAndMomentOfInertia(self, conf=None):
     """
     :param conf: a configuration object, or None for the
                  current configuration
     :type conf: :class:~MMTK.ParticleProperties.Configuration or NoneType
     :returns: the center of mass and the moment of inertia tensor
               in the given configuration
     """
     from Scientific.Geometry import delta
     offset = None
     universe = self.universe()
     if universe is not None:
         offset = universe.contiguousObjectOffset([self], conf)
     m = 0.
     mr = Vector(0., 0., 0.)
     t = Tensor(3 * [3 * [0.]])
     for a in self.atomIterator():
         ma = a._mass
         if offset is None:
             r = a.position(conf)
         else:
             r = a.position(conf) + offset[a]
         m += ma
         mr += ma * r
         t += ma * r.dyadicProduct(r)
     cm = mr / m
     t -= m * cm.dyadicProduct(cm)
     t = t.trace() * delta - t
     return cm, t
Exemplo n.º 3
0
def changeBasis(pt, op, ip, jp, kp):
    """Returns the coordinates of a point after a change of basis.
    
    @param pt: the coordinates of the point in the old basis.
    @type pt: Scientific Vector   

    @param op: the coordinates of the new origin in the old basis.
    @type op: Scientific Vector   

    @param ip: the coordinates of the new x axis in the old basis.
    @type ip: Scientific Vector   

    @param jp: the coordinates of the new y axis in the old basis.
    @type jp: Scientific Vector   

    @param kp: the coordinates of the new z axis in the old basis.
    @type kp: Scientific Vector   

    @return: the coordinates of the point in the new basis.
    @rtype: Scientific Vector   
    """

    mat = Tensor(N.array([ip, jp, kp], typecode=N.Float).transpose())
    matinv = mat.inverse()

    # This is the formula of the change of basis.
    mprim = matinv * (pt - op)

    return mprim
Exemplo n.º 4
0
 def __getitem__(self, item):
     i1, i2 = item
     if not isinstance(i1, int):
         i1 = i1.index
     if not isinstance(i2, int):
         i2 = i2.index
     if i1 > i2:
         i1, i2 = i2, i1
         return Tensor(N.transpose(self.array[i1, :, i2, :]))
     else:
         return Tensor(self.array[i1, :, i2, :])
Exemplo n.º 5
0
 def __init__(self, universe, lower, upper, number, initial=None):
     basis = universe.reciprocalBasisVectors()
     if basis is None:
         self.basis = None
         if initial is None:
             self._makeRandomKList(lower, upper, number)
         else:
             self.klist = [initial]
     else:
         self.basis = map(lambda v: 2. * N.pi * v, basis)
         inverse = N.array(map(list, universe.basisVectors()))
         self.inverse = Tensor(inverse) / (2. * N.pi)
         cell_volume = self.basis[0] * (self.basis[1].cross(self.basis[2]))
         if initial is None:
             center = 0.5 * (lower + upper)
             shell_volume = 4. * N.pi * center**2 * (upper - lower)
             ncells = shell_volume / cell_volume
             if number > 1.5 * ncells:
                 number = int(1.5 * ncells)
             if ncells > 500:
                 self._makeRandomKList(lower, upper, number)
             else:
                 self._makeExplicitKList(lower, upper, number)
         else:
             ki = map(round, self.inverse * initial)
             k = ki[0]*self.basis[0] + ki[1]*self.basis[1] + \
                 ki[2]*self.basis[2]
             self.klist = [k]
Exemplo n.º 6
0
 def zero(self):
     """
     @returns: a tensor of the same rank as the field values
               with all elements equal to zero
     @rtype: L{Scientifc.Geometry.Tensor}
     """
     if self.rank == 0:
         return 0.
     else:
         return Tensor(Numeric.zeros(self.rank*(3,), Numeric.Float))
Exemplo n.º 7
0
 def __call__(self, *points):
     if len(points) == 1:
         points = tuple(points[0])
     value = apply(Interpolation.InterpolatingFunction.__call__,
                   (self, ) + points)
     if self.rank == 0:
         return value
     elif self.rank == 1:
         return Vector(value)
     else:
         return Tensor(value)
Exemplo n.º 8
0
    def centerAndMomentOfInertia(self, conf = None):
        "Returns the center of mass and the moment of inertia tensor."
        from Scientific.Geometry.TensorModule import delta
        offset = None
        universe = self.universe()
        if universe is not None:
            offset = universe.contiguousObjectOffset([self], conf)
	m = 0.
	mr = Vector(0.,0.,0.)
	t = Tensor(3*[3*[0.]])
	for a in self.atomList():
	    ma = a._mass
            if offset is None:
                r = a.position(conf)
            else:
                r = a.position(conf)+offset[a]
	    m = m + ma
	    mr = mr + ma*r
	    t = t + ma*r.dyadicProduct(r)
	cm = mr/m
	t = t - m*cm.dyadicProduct(cm)
	t = t.trace()*delta - t
	return cm, t
Exemplo n.º 9
0
 def centerAndMomentOfInertia(self, conf=None):
     "Returns the center of mass and the moment of inertia tensor."
     from Scientific.Geometry import delta
     offset = None
     universe = self.universe()
     if universe is not None:
         offset = universe.contiguousObjectOffset([self], conf)
     m = 0.
     mr = Vector(0., 0., 0.)
     t = Tensor(3 * [3 * [0.]])
     for a in self.atomList():
         ma = a._mass
         if offset is None:
             r = a.position(conf)
         else:
             r = a.position(conf) + offset[a]
         m = m + ma
         mr = mr + ma * r
         t = t + ma * r.dyadicProduct(r)
     cm = mr / m
     t = t - m * cm.dyadicProduct(cm)
     t = t.trace() * delta - t
     return cm, t
Exemplo n.º 10
0
    def __init__(self, universe, qVectorsDict):

        if not isinstance(qVectorsDict, dict):
            raise Error("%s: not a valid python dictionnary." % qVectorsDict)

        self.qVectorsDict = copy.copy(qVectorsDict)

        # A copy of the input universe.
        self.universe = universe

        if self.universe.reciprocalBasisVectors() is None:

            # The direct basis.
            self.dirBasis = None

            # The reciprocal basis.
            self.recBasis = None

        else:

            # The direct basis.
            self.dirBasis = Tensor(
                N.array([N.array(v) for v in self.universe.basisVectors()],
                        typecode=N.Float)) / (2.0 * N.pi)

            # The reciprocal basis.
            self.recBasis = (2.0 * N.pi) * Tensor(
                N.array([
                    N.array(v) for v in self.universe.reciprocalBasisVectors()
                ],
                        typecode=N.Float))

            self.transRecBasis = self.recBasis.transpose()

        # These tree qttributes will the "output" for the class.
        self.qRadii = []
        self.qVectors = []
        self.hkls = []

        self.qGeometry = self.qVectorsDict.get("qgeometry", None)

        if self.qGeometry in ["spatial", "planar", "axial"]:

            qShells = self.qVectorsDict.get("qshellvalues", None)
            self.qShells = Generate_QShells(qShells)

            try:
                self.qShellWidth = float(self.qVectorsDict.get("qshellwidth"))
            except:
                raise Error("Invalid value for qshellwidth parameter.")

            try:
                self.qVectorsPerShell = int(
                    self.qVectorsDict.get("qvectorspershell"))
            except:
                raise Error("Invalid value for qvectorspershell parameter.")

            self.qGeometry = self.qVectorsDict.get("qgeometry", None)

            if self.qGeometry == "spatial":
                self._spatial_qvectors()

            elif self.qGeometry == "planar":
                self._planar_qvectors()

            elif self.qGeometry == "axial":
                self._axial_qvectors()

            else:
                raise Error("%s is not a valid Qvector geometry." %
                            self.qGeometry)

        elif self.qGeometry == "userdefined":
            self._userdefined_qvectors()

        else:
            raise Error("%s is not a valid Qvector geometry." % self.qGeometry)

        self.qRadii = N.array(self.qRadii, typecode=N.Float)

        self.qvectors_statistics()

        self._display_qvectors()
Exemplo n.º 11
0
    def NeRFinte2cart(self, dihe):  # Needs debug
        """
		Reconstructs atomlist positions
		2005 Parsons et al - NeRF algorithm
		:param universe: MMTK universe
		:type universe: MMTK universe
		:param dihe: list of dihedrals
		:type dihe: [[[],[],aval] , [[],[],aval] , dval] where [] is a bond
		"""
        known_atoms = []
        unknown_atoms = copy.deepcopy(universe.atomList())
        C = Vector(0, 0, 0)
        D = Vector(0, 0, 0)
        D2 = Vector(0, 0, 0)
        l = len(dihe)
        for di in range(l):  # Create the START stack
            dihe.append(self.swap_dihe(dihe[di]))

        #for i in dihe:
        #	print_zmat_dihe(i)

        # Assign initial values
        i = dihe[0]
        a1 = i[0][0][0]
        a2 = i[0][0][1]
        a3 = i[1][1][0]
        a4 = i[1][1][1]
        R1 = i[0][0][2]
        R2 = i[1][1][2]
        theta1 = i[0][2]
        phi = i[2]
        universe.atomList()[a1.index].setPosition(Vector(0, 0, 0))
        universe.atomList()[a2.index].setPosition(Vector(R1, 0, 0))
        universe.atomList()[a3.index].setPosition(
            Vector(R1 - R2 * cos(theta1), R2 * sin(theta1), 0))
        known_atoms.append(a1)
        known_atoms.append(a2)
        known_atoms.append(a3)
        #print 'initialize at: ', a1, a2, a3
        #bPDBprint_atom('HETATM', a1.name, 10*a1.position())
        #bPDBprint_atom('HETATM', a2.name, 10*a2.position())
        #bPDBprint_atom('HETATM', a3.name, 10*a3.position())
        # Main loop
        cnt = 0
        while len(known_atoms) < len(universe.atomList()):
            cnt += 1
            if cnt > 9999:
                print 'NeRFinte2cart() cnt EXCEEDED: 9999'
                break
            ai = -1
            for a in unknown_atoms:
                ai += 1
                for i in dihe:  # Search if atom a is a4 in any dihe
                    a1 = i[0][0][0]
                    a2 = i[0][0][1]
                    a3 = i[1][0][1]
                    a4 = i[1][1][1]
                    a1known = 0
                    a2known = 0
                    a3known = 0
                    a4known = 0
                    if a4.index == a.index:
                        for k in known_atoms:  # Check if atom is in KNOWN stack
                            if a4.index == k.index:
                                a4known = 1
                                break
                            if a1.index == k.index:
                                a1known = 1
                            if a2.index == k.index:
                                a2known = 1
                            if a3.index == k.index:
                                a3known = 1
                        if ((a4known == 0) and \
                         (a1known == 1) and (a2known == 1) and (a3known == 1)):
                            # Move everything so that a3 is in the center
                            M = Translation(-1 * a3.position())
                            universe.applyTransformation(M)
                            for k in known_atoms:
                                M(k.position())
                            # Solve a4
                            #print 'SOLVE: ', a4
                            print_zmat_dihe(i)
                            A = a1.position()
                            B = a2.position()
                            C = a3.position()
                            #print 'A = ', A, '(', a1.name , ')'
                            #print 'B = ', B, '(', a2.name , ')'
                            #print 'C = ', C, '(', a3.name , ')'
                            R = i[1][1][2]
                            #print 'R = ', R
                            theta = i[1][2]
                            if theta > pi / 2:
                                theta = pi - theta
                            #print 'theta = ', theta, numpy.rad2deg(theta)
                            phi = i[2]
                            if phi < 0:
                                phi = pi - phi
                            #print 'phi = ', phi, numpy.rad2deg(phi)
                            AB = B - A  # B - A
                            #print 'AB = ', AB
                            BC = C - B  # C - B
                            #print 'BC = ', BC
                            bc = BC.normal()
                            #print 'bc = ', bc
                            n = AB.cross(bc)
                            n = n.normal()
                            #print 'n = ', n
                            Mx = bc
                            #print 'Mx = ', Mx
                            My = n.cross(bc)
                            My = My.normal()
                            #print 'My = ', My
                            Mz = n
                            #print 'Mz = ', Mz
                            M = Tensor([ [Mx.x(), Mx.y(), Mx.z()],\
                                [My.x(), My.y(), My.z()],\
                                [Mz.x(), Mz.y(), Mz.z()] ])
                            #print 'M: '
                            #print M
                            D2 = Vector(R * cos(theta),
                                        R * cos(phi) * sin(theta),
                                        R * sin(phi) * sin(theta))
                            #print 'D2: '
                            #print D2
                            D = M * D2
                            D = D + C
                            #print 'D: '
                            #print D
                            a.setPosition(D)
                            universe.atomList()[a4.index].setPosition(D)
                            # Add a4 to KNOWN
                            known_atoms.append(a4)
                            unknown_atoms.pop(ai)
                            #print '========================'
                            break

        for k in known_atoms:
            bPDBprint_atom('HETATM', k.name, 10 * k.position())
 def readLine(self):
     """Returns the contents of the next non-blank line (= record).
     The return value is a tuple whose first element (a string)
     contains the record type. For supported record types (HEADER,
     ATOM, HETATM, ANISOU, TERM, MODEL, CONECT), the items from the
     remaining fields are put into a dictionary which is returned
     as the second tuple element. Most dictionary elements are
     strings or numbers; atom positions are returned as a vector,
     and anisotropic temperature factors are returned as a rank-2
     tensor, already multiplied by 1.e-4. White space is stripped
     from all strings except for atom names, whose correct
     interpretation can depend on an initial space. For unsupported
     record types, the second tuple element is a string containing
     the remaining part of the record.
     """
     while 1:
         line = self.file.readline()
         if not line: return ('END', '')
         if line[-1] == '\n': line = line[:-1]
         line = string.strip(line)
         if line: break
     line = string.ljust(line, 80)
     type = string.strip(line[:6])
     if type == 'ATOM' or type == 'HETATM':
         line = FortranLine(line, atom_format)
         data = {
             'serial_number': line[1],
             'name': line[2],
             'alternate': string.strip(line[3]),
             'residue_name': string.strip(line[4]),
             'chain_id': string.strip(line[5]),
             'residue_number': line[6],
             'insertion_code': string.strip(line[7]),
             'position': Vector(line[8:11]),
             'occupancy': line[11],
             'temperature_factor': line[12],
             'segment_id': string.strip(line[13]),
             'element': string.strip(line[14]),
             'charge': string.strip(line[15])
         }
         return type, data
     elif type == 'ANISOU':
         line = FortranLine(line, anisou_format)
         data = {
             'serial_number':
             line[1],
             'name':
             line[2],
             'alternate':
             string.strip(line[3]),
             'residue_name':
             string.strip(line[4]),
             'chain_id':
             string.strip(line[5]),
             'residue_number':
             line[6],
             'insertion_code':
             string.strip(line[7]),
             'u':
             1.e-4 * Tensor([[line[8], line[11], line[12]],
                             [line[11], line[9], line[13]],
                             [line[12], line[13], line[10]]]),
             'segment_id':
             string.strip(line[14]),
             'element':
             string.strip(line[15]),
             'charge':
             string.strip(line[16])
         }
         return type, data
     elif type == 'TER':
         line = FortranLine(line, ter_format)
         data = {
             'serial_number': line[1],
             'residue_name': string.strip(line[2]),
             'chain_id': string.strip(line[3]),
             'residue_number': line[4],
             'insertion_code': string.strip(line[5])
         }
         return type, data
     elif type == 'CONECT':
         line = FortranLine(line, conect_format)
         data = {
             'serial_number': line[1],
             'bonded': filter(lambda i: i > 0, line[2:6]),
             'hydrogen_bonded': filter(lambda i: i > 0, line[6:10]),
             'salt_bridged': filter(lambda i: i > 0, line[10:12])
         }
         return type, data
     elif type == 'MODEL':
         line = FortranLine(line, model_format)
         data = {'serial_number': line[1]}
         return type, data
     elif type == 'HEADER':
         line = FortranLine(line, header_format)
         data = {'compound': line[1], 'date': line[2], 'pdb_code': line[3]}
         return type, data
     else:
         return type, line[6:]
Exemplo n.º 13
0
 def zero(self):
     return Tensor(3 * [[0., 0., 0.]])
Exemplo n.º 14
0
 def sumOverParticles(self):
     return Tensor(N.add.reduce(self.array, 0))
Exemplo n.º 15
0
 def zero(self):
     return Tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
Exemplo n.º 16
0
 def __getitem__(self, item):
     if not isinstance(item, int):
         item = item.index
     return Tensor(self.array[item])