def eigenvalues(self):
     """
     @returns: the eigenvalues of the tensor
     @rtype: C{Numeric.array}
     @raises ValueError: if rank !=2 
     """
     if self.rank == 2:
         from Scientific.LA import eigenvalues
         return eigenvalues(self.array)
     else:
         raise ValueError('Undefined operation')
Exemplo n.º 2
0
 def eigenvalues(self):
     """
     @returns: the eigenvalues of the tensor
     @rtype: C{Numeric.array}
     @raises ValueError: if rank !=2 
     """
     if self.rank == 2:
         from Scientific.LA import eigenvalues
         return eigenvalues(self.array)
     else:
         raise ValueError('Undefined operation')
Exemplo n.º 3
0
 def poles(self):
     """
     @returns: the poles of the model in the complex M{z}-plane
     @rtype: C{Numeric.array} of C{complex}
     """
     if self._poles is None:
         from Scientific.LA import eigenvalues
         n = len(self.coeff)
         if n == 1:
             self._poles = self.coeff
         else:
             a = N.zeros_st((n, n), self.coeff)
             a[1:, :-1] = N.identity(n-1)
             a[:, -1] = self.coeff
             self._poles = eigenvalues(a)
     return self._poles
Exemplo n.º 4
0
 def poles(self):
     """
     @returns: the poles of the model in the complex M{z}-plane
     @rtype: C{Numeric.array} of C{complex}
     """
     if self._poles is None:
         from Scientific.LA import eigenvalues
         n = len(self.coeff)
         if n == 1:
             self._poles = self.coeff
         else:
             a = N.zeros_st((n, n), self.coeff)
             a[1:, :-1] = N.identity(n - 1)
             a[:, -1] = self.coeff
             self._poles = eigenvalues(a)
     return self._poles
Exemplo n.º 5
0
    def zeros(self):
        """
        Find the X{zeros} (X{roots}) of the polynomial by diagonalization
        of the associated Frobenius matrix.

        @returns: an array containing the zeros
        @rtype: C{Numeric.array}
        @note: this is defined only for polynomials in one variable
        @raise ValueError: is the polynomial has more than one variable
        """
        if self.dim != 1:
            raise ValueError("not implemented")
        n = len(self.coeff)-1
        if n == 0:
            return Numeric.array([])
        a = Numeric.zeros_st((n, n), self.coeff)
        if n > 1:
            a[1:, :-1] = Numeric.identity(n-1)
        a[:, -1] = -self.coeff[:-1]/self.coeff[-1]
        from Scientific.LA import eigenvalues
        return eigenvalues(a)
    def zeros(self):
        """
        Find the X{zeros} (X{roots}) of the polynomial by diagonalization
        of the associated Frobenius matrix.

        @returns: an array containing the zeros
        @rtype: C{Numeric.array}
        @note: this is defined only for polynomials in one variable
        @raise ValueError: is the polynomial has more than one variable
        """
        if self.dim != 1:
            raise ValueError("not implemented")
        n = len(self.coeff) - 1
        if n == 0:
            return Numeric.array([])
        a = Numeric.zeros_st((n, n), self.coeff)
        if n > 1:
            a[1:, :-1] = Numeric.identity(n - 1)
        a[:, -1] = -self.coeff[:-1] / self.coeff[-1]
        from Scientific.LA import eigenvalues
        return eigenvalues(a)