Exemplo n.º 1
0
def run(plotIt=True, nFreq=1):
    """
        MT: 3D: Forward
        ===============

        Forward model 3D MT data.

    """

    # Make a mesh
    M = simpeg.Mesh.TensorMesh([[(100,5,-1.5),(100.,10),(100,5,1.5)],[(100,5,-1.5),(100.,10),(100,5,1.5)],[(100,5,1.6),(100.,10),(100,3,2)]], x0=['C','C',-3529.5360])
    # Setup the model
    conds = [1e-2,1]
    sig = simpeg.Utils.ModelBuilder.defineBlock(M.gridCC,[-1000,-1000,-400],[1000,1000,-200],conds)
    sig[M.gridCC[:,2]>0] = 1e-8
    sig[M.gridCC[:,2]<-600] = 1e-1
    sigBG = np.zeros(M.nC) + conds[0]
    sigBG[M.gridCC[:,2]>0] = 1e-8

    ## Setup the the survey object
    # Receiver locations
    rx_x, rx_y = np.meshgrid(np.arange(-500,501,50),np.arange(-500,501,50))
    rx_loc = np.hstack((simpeg.Utils.mkvc(rx_x,2),simpeg.Utils.mkvc(rx_y,2),np.zeros((np.prod(rx_x.shape),1))))
    # Make a receiver list
    rxList = []
    for loc in rx_loc:
        # NOTE: loc has to be a (1,3) np.ndarray otherwise errors accure
        for rx_orientation in ['xx','xy','yx','yy']:
            rxList.append(NSEM.Rx.Point_impedance3D(simpeg.mkvc(loc,2).T,rx_orientation, 'real'))
            rxList.append(NSEM.Rx.Point_impedance3D(simpeg.mkvc(loc,2).T,rx_orientation, 'imag'))
        for rx_orientation in ['zx','zy']:
            rxList.append(NSEM.Rx.Point_tipper3D(simpeg.mkvc(loc,2).T,rx_orientation, 'real'))
            rxList.append(NSEM.Rx.Point_tipper3D(simpeg.mkvc(loc,2).T,rx_orientation, 'imag'))
    # Source list
    srcList =[]
    for freq in np.logspace(3,-3,nFreq):
        srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList,freq))
    # Survey MT
    survey = NSEM.Survey(srcList)

    ## Setup the problem object
    problem = NSEM.Problem3D_ePrimSec(M, sigmaPrimary=sigBG)

    problem.pair(survey)
    problem.Solver = Solver

    # Calculate the data
    fields = problem.fields(sig)
    dataVec = survey.eval(fields)

    # Make the data
    mtData = NSEM.Data(survey,dataVec)

    # Add plots
    if plotIt:
        pass
Exemplo n.º 2
0
def calculateAnalyticSolution(srcList,mesh,model):
    surveyAna = NSEM.Survey(srcList)
    data1D = NSEM.Data(surveyAna)
    for src in surveyAna.srcList:
        elev = src.rxList[0].locs[0]
        anaEd, anaEu, anaHd, anaHu = NSEM.Utils.MT1Danalytic.getEHfields(mesh,model,src.freq,elev)
        anaE = anaEd+anaEu
        anaH = anaHd+anaHu
        # Scale the solution
        # anaE = (anaEtemp/anaEtemp[-1])#.conj()
        # anaH = (anaHtemp/anaEtemp[-1])#.conj()
        anaZ = anaE/anaH
        for rx in src.rxList:
            data1D[src,rx] = getattr(anaZ, rx.component)
    return data1D
Exemplo n.º 3
0
def DerivJvecTest(halfspace_value, freq=False, expMap=True):

    survey, sig, sigBG, mesh = NSEM.Utils.testUtils.setup1DSurvey(
        halfspace_value, False, structure=True)
    problem = NSEM.Problem1D_ePrimSec(mesh,
                                      sigmaPrimary=sigBG,
                                      sigmaMap=simpeg.Maps.IdentityMap(mesh))
    problem.pair(survey)
    print('Using {0} solver for the problem'.format(problem.Solver))
    print(
        'Derivative test of Jvec for eForm primary/secondary for 1d comp from {0} to {1} Hz\n'
        .format(survey.freqs[0], survey.freqs[-1]))
    # problem.mapping = simpeg.Maps.ExpMap(problem.mesh)
    # problem.sigmaPrimary = np.log(sigBG)

    x0 = sigBG
    # cond = sig[0]
    # x0 = np.log(np.ones(problem.mesh.nC)*halfspace_value)
    # problem.sigmaPrimary = x0
    np.random.seed(1983)
    # if True:
    #     x0  = x0 + np.random.randn(problem.mesh.nC)*halfspace_value*1e-1
    survey = problem.survey

    def fun(x):
        return survey.dpred(x), lambda x: problem.Jvec(x0, x)

    return simpeg.Tests.checkDerivative(fun, x0, num=4, plotIt=False, eps=FLR)
Exemplo n.º 4
0
def dataMis_AnalyticPrimarySecondary(sigmaHalf):

    # Make the survey
    # Primary secondary
    survey, sig, sigBG, mesh = NSEM.Utils.testUtils.setup1DSurvey(sigmaHalf,False,structure=True)
    # Analytic data
    problem = NSEM.Problem1D_ePrimSec(mesh, sigmaPrimary = sig)
    problem.pair(survey)

    dataAnaObj = calculateAnalyticSolution(survey.srcList,mesh,sig)

    data = survey.dpred(sig)
    dataAna = simpeg.mkvc(dataAnaObj)
    return np.all((data - dataAna)/dataAna < 2.)
def appRes_psFieldNorm(sigmaHalf):

    # Make the survey
    survey, sigma, sigBG, mesh = NSEM.Utils.testUtils.setup1DSurvey(sigmaHalf,False)
    problem = NSEM.Problem1D_ePrimSec(mesh, sigmaPrimary = sigBG)
    problem.pair(survey)

    # Get the fields
    fields = problem.fields(sigma)

    # Project the data
    data = survey.eval(fields)

    # Calculate the app res and phs
    app_r = np.array(NSEM.Utils.testUtils.getAppResPhs(data))[:,0]

    return np.linalg.norm(np.abs(np.log(app_r) - np.log(np.ones(survey.nFreq)/sigmaHalf))*np.log(sigmaHalf))
Exemplo n.º 6
0
def JvecAdjointTest(sigmaHalf, formulation='PrimSec'):
    forType = 'PrimSec' not in formulation
    survey, sigma, sigBG, m1d = NSEM.Utils.testUtils.setup1DSurvey(sigmaHalf,tD=forType,structure=False)
    print('Adjoint test of e formulation for {:s} comp \n'.format(formulation))

    if 'PrimSec' in formulation:
        problem = NSEM.Problem1D_ePrimSec(m1d, sigmaPrimary = sigBG)
    else:
        raise NotImplementedError('Only {} formulations are implemented.'.format(formulation))
    problem.pair(survey)
    m  = sigma
    u = problem.fields(m)

    np.random.seed(1983)
    v = np.random.rand(survey.nD,)
    # print problem.PropMap.PropModel.nP
    w = np.random.rand(problem.mesh.nC,)

    vJw = v.ravel().dot(problem.Jvec(m, w, u))
    wJtv = w.ravel().dot(problem.Jtvec(m, v, u))
    tol = np.max([TOL*(10**int(np.log10(np.abs(vJw)))),FLR])
    print(' vJw   wJtv  vJw - wJtv     tol    abs(vJw - wJtv) < tol')
    print(vJw, wJtv, vJw - wJtv, tol, np.abs(vJw - wJtv) < tol)
    return np.abs(vJw - wJtv) < tol
Exemplo n.º 7
0
def run(plotIt=True):

    # Setup the forward modeling
    # Setting up 1D mesh and conductivity models to forward model data.
    # Frequency
    nFreq = 26
    freqs = np.logspace(2, -3, nFreq)
    # Set mesh parameters
    ct = 10
    air = simpeg.Utils.meshTensor([(ct, 25, 1.4)])
    core = np.concatenate(
        (np.kron(simpeg.Utils.meshTensor([(ct, 15, -1.2)]), np.ones(
            (8, ))), simpeg.Utils.meshTensor([(ct, 5)])))
    bot = simpeg.Utils.meshTensor([(core[0], 20, -1.4)])
    x0 = -np.array([np.sum(np.concatenate((core, bot)))])
    # Make the model
    m1d = simpeg.Mesh.TensorMesh([np.concatenate((bot, core, air))], x0=x0)

    # Setup model variables
    active = m1d.vectorCCx < 0.
    layer1 = (m1d.vectorCCx < -500.) & (m1d.vectorCCx >= -800.)
    layer2 = (m1d.vectorCCx < -3500.) & (m1d.vectorCCx >= -5000.)
    # Set the conductivity values
    sig_half = 1e-2
    sig_air = 1e-8
    sig_layer1 = .2
    sig_layer2 = .2
    # Make the true model
    sigma_true = np.ones(m1d.nCx) * sig_air
    sigma_true[active] = sig_half
    sigma_true[layer1] = sig_layer1
    sigma_true[layer2] = sig_layer2
    # Extract the model
    m_true = np.log(sigma_true[active])
    # Make the background model
    sigma_0 = np.ones(m1d.nCx) * sig_air
    sigma_0[active] = sig_half
    m_0 = np.log(sigma_0[active])

    # Set the mapping
    actMap = simpeg.Maps.InjectActiveCells(m1d,
                                           active,
                                           np.log(1e-8),
                                           nC=m1d.nCx)
    mappingExpAct = simpeg.Maps.ExpMap(m1d) * actMap

    # Setup the layout of the survey, set the sources and the connected receivers
    # Receivers
    rxList = []
    rxList.append(
        NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]), 2).T, 'real'))
    rxList.append(
        NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]), 2).T, 'imag'))
    # Source list
    srcList = []
    for freq in freqs:
        srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq))
    # Make the survey
    survey = NSEM.Survey(srcList)
    survey.mtrue = m_true

    # Set the problem
    problem = NSEM.Problem1D_ePrimSec(m1d,
                                      sigmaPrimary=sigma_0,
                                      sigmaMap=mappingExpAct)
    problem.pair(survey)

    # Forward model data
    # Project the data
    survey.dtrue = survey.dpred(m_true)
    survey.dobs = (
        survey.dtrue +
        0.01 * abs(survey.dtrue) * np.random.randn(*survey.dtrue.shape))

    # Assign uncertainties
    std = 0.025  # 5% std
    survey.std = np.abs(survey.dobs * std)
    # Assign the data weight
    Wd = 1. / survey.std

    # Setup the inversion proceedure
    # Define a counter
    C = simpeg.Utils.Counter()
    # Optimization
    opt = simpeg.Optimization.InexactGaussNewton(maxIter=25)
    opt.counter = C
    opt.LSshorten = 0.1
    opt.remember('xc')
    # Data misfit
    dmis = simpeg.DataMisfit.l2_DataMisfit(survey)
    dmis.W = Wd
    # Regularization - with a regularization mesh
    regMesh = simpeg.Mesh.TensorMesh([m1d.hx[active]], m1d.x0)
    reg = simpeg.Regularization.Tikhonov(regMesh)
    reg.mrefInSmooth = True
    reg.alpha_s = 1e-2
    reg.alpha_x = 1.
    reg.mrefInSmooth = True
    # Inversion problem
    invProb = simpeg.InvProblem.BaseInvProblem(dmis, reg, opt)
    invProb.counter = C
    # Beta schedule
    beta = simpeg.Directives.BetaSchedule()
    beta.coolingRate = 4.
    beta.coolingFactor = 4.
    # Initial estimate of beta
    betaest = simpeg.Directives.BetaEstimate_ByEig(beta0_ratio=10.)
    # Target misfit stop
    targmis = simpeg.Directives.TargetMisfit()
    targmis.target = survey.nD
    # Create an inversion object
    directives = [beta, betaest, targmis]
    inv = simpeg.Inversion.BaseInversion(invProb, directiveList=directives)

    # Run the inversion
    mopt = inv.run(m_0)

    if plotIt:
        fig = NSEM.Utils.dataUtils.plotMT1DModelData(problem, [mopt])
        fig.suptitle('Target - smooth true')
        fig.axes[0].set_ylim([-10000, 500])
Exemplo n.º 8
0
def run(plotIt=True):        
    
#    nFreq = 13
#    freqs = np.logspace(2, -2, nFreq)
#    
#    # x and y grid parameters
#    ctx   = 10 #100
#    npadx = 22
#    incx  = 1.3
#    nx    = [(ctx,npadx,-incx),(ctx,6),(ctx,npadx,incx)]            
#    
#    # z grid parameters
#    ct1   = 10
#    npad1 = 21
#    inc1  = 1.3
#    
#    ct    = 10
#    npad  = 20
#    
#    ct2   = 10
#    npad2 = 20
#    inc2  = 1.3
    
    
        
    nFreq = 13
    freqs = np.logspace(2, -2, nFreq)
    
    # x and y grid parameters
    ctx   = 10 #100
    npadx = 16
    incx  = 1.5
    nx    = [(ctx,npadx,-incx),(ctx,6),(ctx,npadx,incx)]            
    
    # z grid parameters
    ct1   = 30
    npad1 = 15
    inc1  = 1.3
    
    ct    = 25
    npad  = 20
    
    ct2   = 1
    npad2 = 27
    inc2  = 1.3     
      
    
    
    
    
    nz = [(ct1,npad1,-inc1),(ct,npad),(ct2,npad2,inc2)]   
    
    # Origem do sistema de coordenadas da malha
    ztop  = 0
    for i in range(1,npad1+1):
        ztop += ct1*inc1**(i)
    ztop += 1.*ct*npad #9*ct
    # Make a mesh
    M = simpeg.Mesh.TensorMesh([nx,nx,nz], x0=['C', 'C', -ztop])
    #M = simpeg.Mesh.TensorMesh([nx,nx,nz], x0=['C', 'C', 'C']) 
    ccMesh=M.gridCC
    print(np.size(ccMesh))
    #M.setCellGradBC('dirichlet')
    #print(inspect.signature(M.setCellGradBC))  # visualize input parameters of functions
    
    # Setup the model
    # Profundidade do topo de cada camada (precisa coincidir com a malha!)
    ztop  = M.vectorNz[-1]
    
#    zh    = np.array([ztop,0.,-200.,-350])    
#    zh    = np.array([ztop,0.,-200.,-300])
#    conds = np.array([1e-8,1.,0.01,1.]) 
    
    
    #sig = simpeg.Utils.ModelBuilder.layeredModel(ccMesh, zh, conds)

     
    conds = [1e-2,1]
    sig = simpeg.Utils.ModelBuilder.defineBlock(
        M.gridCC, [-15000, -15000, -350], [15000, 15000, -150], conds)
        
    sig[M.gridCC[:, 2] > 0] = 1e-8
    #sig[M.gridCC[:, 2] < -1000] = 1 # 1e-1
    
    #sigBG = sig
    
    sigBG = np.zeros(M.nC) + conds[1]
    sigBG[M.gridCC[:, 2] > 0] = 1e-8
    
  
    
   
    
    if plotIt:
        fig,axes = plt.subplots(num=1,clear=True)
        collect_obj, line_obj = M.plotSlice(np.log(sig), grid=True, normal='y',ax=axes)
        plt.colorbar(collect_obj) 
        plt.show()
     
    #%% Setup the layout of the survey, set the sources and the connected receivers
    # Receiver locations
#    rx_x, rx_y = np.meshgrid(np.arange(-600, 601, 100), np.arange(-600, 601, 100))
    rx_x = np.array([0.])
    rx_y = np.array([0.])
    #rx_z = np.array([0.])
    rx_loc = np.hstack((simpeg.Utils.mkvc(rx_x, 2), simpeg.Utils.mkvc(rx_y, 2), np.zeros((np.prod(rx_x.shape), 1))))
    #rx_loc = np.reshape([rx_x,rx_y,rx_z],(1,3))
    
    # Receivers    
    rxList = []
    for rx_orientation in ['xx', 'xy', 'yx', 'yy']:
        rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'real'))
        rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'imag'))
    for rx_orientation in ['zx', 'zy']:
        rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'real'))
        rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'imag'))
        
    
    # Source list
    srcList = []
    for freq in freqs:
            srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq))
    # Make the survey
    survey = NSEM.Survey(srcList)
    #survey.mtrue = m_true          
    
    # Set the problem
    problem = NSEM.Problem3D_ePrimSec(M, sigma=sig, sigmaPrimary=sigBG)
    problem.pair(survey)
    problem.Solver = Solver   
    
    
    # Calculate the data
    fields = problem.fields()
    dataVec = survey.eval(fields)
   
    
    
    
#    # Add uncertainty to the data - 10% standard
#    # devation and 0 floor
#    dataVec.standard_deviation.fromvec(
#        np.ones_like(simpeg.mkvc(dataVec)) * 0.0
#    )
#    dataVec.floor.fromvec(
#        np.zeros_like(simpeg.mkvc(dataVec))
#    )

    
    if plotIt:
        #plotting
        #    fig,ax1 = plt.subplots(clear=True)
        out1 = dataVec.plot_app_res(np.array([0.,0.]),components=['xy','yx'],
                                    comp_plot_dict = {'xy':{'marker':'None','ls':'-'},
                                                      'yx':{'marker':'None','ls':'--'}  } )
#        out1.autoscale(tight=True)
#        out1.set_yscale('linear')
#        out1.grid(True)
        #out1.set_ylim([0.,300.])    
        
        
        
        
    mu = 4*math.pi*1E-7; #Magnetic Permeability (H/m)
    resistivities = np.array([1.,100.,1.]) #[100,10,200] #[300, 2500, 0.8, 3000, 2500];
    
    thicknesses = [150.,200] #[300,300] #[200, 400, 40, 500];
    n = len(resistivities);
    
    nFreq = 13
    frequencies = np.logspace(2, -2, nFreq) #[1,5,10,25,50,100] #data[:,0] ##[0.0001,0.005,0.01,0.05,0.1,0.5,1,5,10,50,100,500,10000];
    
    rhoapp      = np.zeros(len(frequencies))
    #print('freq\tares\t\t\tphase');
    for i,frequency in enumerate(frequencies):   
        w =  2*math.pi*frequency;       
        impedances = list(range(n));
        #compute basement impedance
        impedances[n-1] = cmath.sqrt(w*mu*resistivities[n-1]*1j);
       
        for j in range(n-2,-1,-1):
            resistivity = resistivities[j];
            thickness = thicknesses[j];
      
            # 3. Compute apparent resistivity from top layer impedance
            #Step 2. Iterate from bottom layer to top(not the basement) 
            # Step 2.1 Calculate the intrinsic impedance of current layer
            dj = cmath.sqrt((w * mu * (1.0/resistivity))*1j);
            wj = dj * resistivity;
            # Step 2.2 Calculate Exponential factor from intrinsic impedance
            ej = cmath.exp(-2*thickness*dj);                     
        
            # Step 2.3 Calculate reflection coeficient using current layer
            #          intrinsic impedance and the below layer impedance
            belowImpedance = impedances[j + 1];
            rj = (wj - belowImpedance)/(wj + belowImpedance);
            re = rj*ej; 
            Zj = wj * ((1 - re)/(1 + re));
            impedances[j] = Zj;    
    
        # Step 3. Compute apparent resistivity from top layer impedance
        Z = impedances[0];
        absZ = abs(Z);
        apparentResistivity = (absZ * absZ)/(mu * w);
        rhoapp[i] = apparentResistivity
        phase = math.atan2(Z.imag, Z.real)
    #    print(frequency, '\t', apparentResistivity, '\t', phase);

    #Plot result
        
    #fig,ax = plt.subplots(num=1,clear=True) 
    ax = out1   
    #ax.plot(frequencies,rhoapp,frequencies,data[:,1],'--')
    ax.plot(frequencies,rhoapp)
    ax.autoscale(tight=True)
    ax.legend(('Analytic','Numeric'))
    ax.set_xlabel('frequency (Hz)')
    ax.set_ylabel('Apparent Resistivity (Rho.m)')
    ax.set_xscale('log')
    ax.set_yscale('linear')
    ax.invert_xaxis()
    ax.grid()         
        
    out1.autoscale(tight=True)
    out1.set_yscale('linear')
    out1.grid(True)    
Exemplo n.º 9
0
# Receivers
rxList = []
for rx_orientation in ['xx', 'xy', 'yx', 'yy']:
    rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'real'))
    rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'imag'))
for rx_orientation in ['zx', 'zy']:
    rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'real'))
    rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'imag'))

# Source list,
srcList = []
for freq in freqs:
    #srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq))
    srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq, sigBG1d, sigBG))
# Make the survey
survey = NSEM.Survey(srcList)
#survey.mtrue = m_true





# Set the problem
problem = NSEM.Problem3D_ePrimSec(M, sigma=sig, sigmaPrimary=sigBG)
problem.pair(survey)
problem.Solver = Solver

# Calculate the data
fields = problem.fields()    # returns secondary field

Exemplo n.º 10
0
def run(plotIt=True):
    """
        MT: 3D: Forward
        ===============

        Forward model 3D MT data.

    """

    # Make a mesh
    M = simpeg.Mesh.TensorMesh([[
        (100, 9, -1.5), (100., 13), (100, 9, 1.5)
    ], [(100, 9, -1.5), (100., 13),
        (100, 9, 1.5)], [(50, 10, -1.6), (50., 10), (50, 6, 2)]],
                               x0=['C', 'C', -14926.8217])
    # Setup the model
    conds = [1, 1e-2]
    sig = simpeg.Utils.ModelBuilder.defineBlock(M.gridCC, [-100, -100, -350],
                                                [100, 100, -150], conds)
    sig[M.gridCC[:, 2] > 0] = 1e-8
    sig[M.gridCC[:, 2] < -1000] = 1e-1
    sigBG = np.zeros(M.nC) + conds[1]
    sigBG[M.gridCC[:, 2] > 0] = 1e-8
    if plotIt:
        collect_obj, line_obj = M.plotSlice(np.log10(sig),
                                            grid=True,
                                            normal='X')
        color_bar = plt.colorbar(collect_obj)

    # Setup the the survey object
    # Receiver locations
    rx_x, rx_y = np.meshgrid(np.arange(-600, 601, 100),
                             np.arange(-600, 601, 100))
    rx_loc = np.hstack((simpeg.Utils.mkvc(rx_x, 2), simpeg.Utils.mkvc(rx_y, 2),
                        np.zeros((np.prod(rx_x.shape), 1))))

    # Make a receiver list
    rxList = []
    for rx_orientation in ['xx', 'xy', 'yx', 'yy']:
        rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation,
                                                'real'))
        rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation,
                                                'imag'))
    for rx_orientation in ['zx', 'zy']:
        rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'real'))
        rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'imag'))

    # Source list
    srcList = [
        NSEM.Src.Planewave_xy_1Dprimary(rxList, freq)
        for freq in np.logspace(4, -2, 13)
    ]
    # Survey MT
    survey = NSEM.Survey(srcList)

    # Setup the problem object
    problem = NSEM.Problem3D_ePrimSec(M, sigma=sig, sigmaPrimary=sigBG)

    problem.pair(survey)
    problem.Solver = Solver

    # Calculate the data
    fields = problem.fields()
    dataVec = survey.eval(fields)

    # Add uncertainty to the data - 10% standard
    # devation and 0 floor
    dataVec.standard_deviation.fromvec(
        np.ones_like(simpeg.mkvc(dataVec)) * 0.1)
    dataVec.floor.fromvec(np.zeros_like(simpeg.mkvc(dataVec)))

    # Add plots
    if plotIt:
        # Plot the data
        # On and off diagonal (on left and right axis, respectively)
        fig, axes = plt.subplots(2, 1, figsize=(7, 5))
        plt.subplots_adjust(right=0.8)
        [(ax.invert_xaxis(), ax.set_xscale('log')) for ax in axes]
        ax_r, ax_p = axes
        ax_r.set_yscale('log')
        ax_r.set_ylabel('Apparent resistivity [xy-yx]')
        ax_r_on = ax_r.twinx()
        ax_r_on.set_yscale('log')
        ax_r_on.set_ylabel('Apparent resistivity [xx-yy]')
        ax_p.set_ylabel('Apparent phase')
        ax_p.set_xlabel('Frequency [Hz]')
        # Start plotting
        ax_r = dataVec.plot_app_res(np.array([-200, 0]),
                                    components=['xy', 'yx'],
                                    ax=ax_r,
                                    errorbars=True)
        ax_r_on = dataVec.plot_app_res(np.array([-200, 0]),
                                       components=['xx', 'yy'],
                                       ax=ax_r_on,
                                       errorbars=True)
        ax_p = dataVec.plot_app_phs(np.array([-200, 0]),
                                    components=['xx', 'xy', 'yx', 'yy'],
                                    ax=ax_p,
                                    errorbars=True)
        ax_p.legend(bbox_to_anchor=(1.05, 1), loc=2)