def test_predict_dipolar(self): h = [0.05, 0.05] meshObj = Mesh.TensorMesh((h, h, h), x0='CCC') dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 mod = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj.nC) times = np.logspace(-4, -2, 3) waveObj = VRM.WaveformVRM.SquarePulse(delt=0.02) phi = np.random.uniform(-np.pi, np.pi) psi = np.random.uniform(-np.pi, np.pi) R = 2. loc_rx = R * np.c_[np.sin(phi) * np.cos(psi), np.sin(phi) * np.sin(psi), np.cos(phi)] rxList = [ VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='x') ] rxList.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='y')) rxList.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='z')) alpha = np.random.uniform(0, np.pi) beta = np.random.uniform(-np.pi, np.pi) loc_tx = [0., 0., 0.] Src = VRM.Src.CircLoop(rxList, loc_tx, 25., np.r_[alpha, beta], 1., waveObj) txList = [Src] Survey = VRM.Survey(txList) Problem = VRM.Problem_Linear(meshObj, ref_factor=0) Problem.pair(Survey) Fields = Problem.fields(mod) H0 = Src.getH0(np.c_[0., 0., 0.]) dmdtx = -H0[0, 0] * 0.1**3 * (dchi / np.log(tau2 / tau1)) * ( 1 / times[1] - 1 / (times[1] + 0.02)) dmdty = -H0[0, 1] * 0.1**3 * (dchi / np.log(tau2 / tau1)) * ( 1 / times[1] - 1 / (times[1] + 0.02)) dmdtz = -H0[0, 2] * 0.1**3 * (dchi / np.log(tau2 / tau1)) * ( 1 / times[1] - 1 / (times[1] + 0.02)) dmdot = np.dot(np.r_[dmdtx, dmdty, dmdtz], loc_rx.T) fx = (1 / (4 * np.pi)) * (3 * loc_rx[0, 0] * dmdot / R**5 - dmdtx / R**3) fy = (1 / (4 * np.pi)) * (3 * loc_rx[0, 1] * dmdot / R**5 - dmdty / R**3) fz = (1 / (4 * np.pi)) * (3 * loc_rx[0, 2] * dmdot / R**5 - dmdtz / R**3) self.assertTrue( np.all( np.abs(Fields[1:-1:3] - np.r_[fx, fy, fz]) < 1e-5 * np.sqrt((Fields[1:-1:3]**2).sum())))
def test_basic_inversion(self): """ Test to see if inversion recovers model """ h = [(2, 30)] meshObj = Mesh.TensorMesh((h, h, [(2, 10)]), x0='CCN') mod = 0.00025 * np.ones(meshObj.nC) mod[(meshObj.gridCC[:, 0] > -4.) & (meshObj.gridCC[:, 1] > -4.) & (meshObj.gridCC[:, 0] < 4.) & (meshObj.gridCC[:, 1] < 4.)] = 0.001 times = np.logspace(-4, -2, 5) waveObj = VRM.WaveformVRM.SquarePulse(0.02) x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16)) x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x)) rxList = [VRM.Rx.Point(np.c_[x, y, z], times, 'dbdt', 'z')] txNodes = np.array([[-20, -20, 0.001], [20, -20, 0.001], [20, 20, 0.001], [-20, 20, 0.01], [-20, -20, 0.001]]) txList = [VRM.Src.LineCurrent(rxList, txNodes, 1., waveObj)] Survey = VRM.Survey(txList) Problem = VRM.Problem_Linear(meshObj, refFact=2) Problem.pair(Survey) Survey.makeSyntheticData(mod) Survey.eps = 1e-11 dmis = DataMisfit.l2_DataMisfit(Survey) W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25 reg = Regularization.Simple(meshObj, alpha_s=0.01, alpha_x=1., alpha_y=1., alpha_z=1., cell_weights=W) opt = Optimization.ProjectedGNCG(maxIter=20, lower=0., upper=1e-2, maxIterLS=20, tolCG=1e-4) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) directives = [ Directives.BetaSchedule(coolingFactor=2, coolingRate=1), Directives.TargetMisfit() ] inv = Inversion.BaseInversion(invProb, directiveList=directives) m0 = 1e-6 * np.ones(len(mod)) mrec = inv.run(m0) dmis_final = np.sum( (dmis.W.diagonal() * (Survey.dobs - Problem.fields(mrec)))**2) mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod) mod_err_inf = np.max(np.abs(mrec - mod)) self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6 and mod_err_inf < np.max(mod))
def test_convergence_radial(self): """ Test the convergence of the solution to analytic results from Cowan (2016) and test accuracy """ h = [(2, 30)] meshObj = Mesh.TensorMesh((h, h, [(2, 20)]), x0='CCN') dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 mod = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj.nC) times = np.array([1e-3]) waveObj = VRM.WaveformVRM.SquarePulse(0.02) z = 0.25 a = 5 # rxList = [VRM.Rx.Point_dhdt(np.c_[a, 0., z], times, 'x')] # rxList.append(VRM.Rx.Point_dhdt(np.c_[0., a, z], times, 'y')) rxList = [VRM.Rx.Point(np.c_[a, 0., z], times, 'dhdt', 'x')] rxList.append(VRM.Rx.Point(np.c_[0., a, z], times, 'dhdt', 'y')) txList = [ VRM.Src.CircLoop(rxList, np.r_[0., 0., z], a, np.r_[0., 0.], 1., waveObj) ] Survey2 = VRM.Survey(txList) Survey3 = VRM.Survey(txList) Survey4 = VRM.Survey(txList) Survey5 = VRM.Survey(txList) Problem2 = VRM.Problem_Linear(meshObj, refFact=2) Problem3 = VRM.Problem_Linear(meshObj, refFact=3) Problem4 = VRM.Problem_Linear(meshObj, refFact=4) Problem5 = VRM.Problem_Linear(meshObj, refFact=5) Problem2.pair(Survey2) Problem3.pair(Survey3) Problem4.pair(Survey4) Problem5.pair(Survey5) Fields2 = Problem2.fields(mod) Fields3 = Problem3.fields(mod) Fields4 = Problem4.fields(mod) Fields5 = Problem5.fields(mod) gamma = 4 * z * (2 / np.pi)**1.5 F = -(1 / np.log(tau2 / tau1)) * (1 / times - 1 / (times + 0.02)) Fields_true = 0.5 * (dchi / (2 + dchi)) * (np.pi * gamma)**-1 * F ErrsX = np.abs((np.r_[Fields2[0], Fields3[0], Fields4[0], Fields5[0]] - Fields_true) / Fields_true) ErrsY = np.abs((np.r_[Fields2[1], Fields3[1], Fields4[1], Fields5[1]] - Fields_true) / Fields_true) Testx1 = ErrsX[-1] < 0.01 Testy1 = ErrsY[-1] < 0.01 Testx2 = np.all(ErrsX[1:] - ErrsX[0:-1] < 0.) Testy2 = np.all(ErrsY[1:] - ErrsY[0:-1] < 0.) self.assertTrue(Testx1 and Testx2 and Testy1 and Testy2)
def test_convergence_vertical(self): """ Test the convergence of the solution to analytic results from Cowan (2016) and test accuracy """ h = [(2, 20)] meshObj = Mesh.TensorMesh((h, h, h), x0='CCN') dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 mod = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj.nC) times = np.array([1e-3]) waveObj = VRM.WaveformVRM.SquarePulse(delt=0.02) z = 0.5 a = 0.1 loc_rx = np.c_[0., 0., z] rxList = [ VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='z') ] txList = [ VRM.Src.CircLoop(rxList, np.r_[0., 0., z], a, np.r_[0., 0.], 1., waveObj) ] Survey2 = VRM.Survey(txList) Survey3 = VRM.Survey(txList) Survey4 = VRM.Survey(txList) Survey5 = VRM.Survey(txList) Problem2 = VRM.Problem_Linear(meshObj, ref_factor=2) Problem3 = VRM.Problem_Linear(meshObj, ref_factor=3) Problem4 = VRM.Problem_Linear(meshObj, ref_factor=4) Problem5 = VRM.Problem_Linear(meshObj, ref_factor=5) Problem2.pair(Survey2) Problem3.pair(Survey3) Problem4.pair(Survey4) Problem5.pair(Survey5) Fields2 = Problem2.fields(mod) Fields3 = Problem3.fields(mod) Fields4 = Problem4.fields(mod) Fields5 = Problem5.fields(mod) F = -(1 / np.log(tau2 / tau1)) * (1 / times - 1 / (times + 0.02)) Fields_true = (0.5 * np.pi * a**2 / np.pi) * (dchi / (2 + dchi)) * ( (2 * z)**2 + a**2)**-1.5 * F Errs = np.abs( (np.r_[Fields2, Fields3, Fields4, Fields5] - Fields_true) / Fields_true) Test1 = Errs[-1] < 0.005 Test2 = np.all(Errs[1:] - Errs[0:-1] < 0.) self.assertTrue(Test1 and Test2)
loc = np.c_[mkvc(x), mkvc(y), mkvc(z)] # Src and Rx Locations srcListVRM = [] for pp in range(0, loc.shape[0]): loc_pp = np.reshape(loc[pp, :], (1, 3)) rxListVRM = [ VRM.Rx.Point(loc_pp, times=times, fieldType='dbdt', fieldComp='z') ] srcListVRM.append( VRM.Src.MagDipole(rxListVRM, mkvc(loc[pp, :]), [0., 0., 0.01], waveform)) survey_vrm = VRM.Survey(srcListVRM) ########################################################################## # Forward Problem # --------------- # # Here we predict data by solving the forward problem. For the VRM problem, # we use a sensitivity refinement strategy for cells # that are proximal to # transmitters. This is controlled through the *ref_factor* and *ref_radius* # properties. # # Defining the forward problem problem_vrm = VRM.Problem_Linear(mesh, indActive=topoCells, ref_factor=3,
def test_sources(self): """ Multiple source classes are used to make a small dipole source with the same orientation and dipole moment. Test ensures the same fields are computed. """ h = [0.5, 0.5] meshObj = Mesh.TensorMesh((h, h, h), x0='CCC') dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 mod = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj.nC) times = np.logspace(-4, -2, 3) waveObj = VRM.WaveformVRM.SquarePulse(delt=0.02) phi = np.random.uniform(-np.pi, np.pi) psi = np.random.uniform(-np.pi, np.pi) Rrx = 3. loc_rx = Rrx * np.c_[np.sin(phi) * np.cos(psi), np.sin(phi) * np.sin(psi), np.cos(phi)] rxList = [ VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='x') ] rxList.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='y')) rxList.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='z')) alpha = np.random.uniform(0, np.pi) beta = np.random.uniform(-np.pi, np.pi) Rtx = 4. loc_tx = Rtx * np.r_[np.sin(alpha) * np.cos(beta), np.sin(alpha) * np.sin(beta), np.cos(alpha)] txList = [VRM.Src.MagDipole(rxList, loc_tx, [0., 0., 0.01], waveObj)] txList.append( VRM.Src.CircLoop(rxList, loc_tx, np.sqrt(0.01 / np.pi), np.r_[0., 0.], 1., waveObj)) px = loc_tx[0] + np.r_[-0.05, 0.05, 0.05, -0.05, -0.05] py = loc_tx[1] + np.r_[-0.05, -0.05, 0.05, 0.05, -0.05] pz = loc_tx[2] * np.ones(5) txList.append( VRM.Src.LineCurrent(rxList, np.c_[px, py, pz], 1., waveObj)) Survey = VRM.Survey(txList) Problem = VRM.Problem_Linear(meshObj, ref_factor=1) Problem.pair(Survey) Fields = Problem.fields(mod) err1 = np.all( np.abs(Fields[9:18] - Fields[0:9]) / (np.abs(Fields[0:9]) + 1e-14) < 0.005) err2 = np.all( np.abs(Fields[18:] - Fields[0:9]) / (np.abs(Fields[0:9]) + 1e-14) < 0.005) err3 = np.all( np.abs(Fields[9:18] - Fields[18:]) / (np.abs(Fields[18:]) + 1e-14) < 0.005) self.assertTrue(err1 and err2 and err3)
def test_receiver_types(self): """ Test ensures the fields predicted for each receiver type are correct. """ h1 = [0.25, 0.25] meshObj_Tensor = Mesh.TensorMesh((h1, h1, h1), x0='CCN') chi0 = 0. dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 # Tensor Model mod = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj_Tensor.nC) times = np.array([1e-3]) waveObj = VRM.WaveformVRM.SquarePulse(delt=0.02) phi = np.random.uniform(-np.pi, np.pi) psi = np.random.uniform(-np.pi, np.pi) R = 5. loc_rx = R * np.c_[np.sin(phi) * np.cos(psi), np.sin(phi) * np.sin(psi), np.cos(phi)] loc_tx = 0.5 * np.r_[np.sin(phi) * np.cos(psi), np.sin(phi) * np.sin(psi), np.cos(phi)] rxList1 = [ VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='x') ] rxList1.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='y')) rxList1.append( VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='z')) w = 0.1 N = 100 rxList2 = [ VRM.Rx.SquareLoop(loc_rx, times=times, width=w, nTurns=N, fieldType='dhdt', fieldComp='x') ] rxList2.append( VRM.Rx.SquareLoop(loc_rx, times=times, width=w, nTurns=N, fieldType='dhdt', fieldComp='y')) rxList2.append( VRM.Rx.SquareLoop(loc_rx, times=times, width=w, nTurns=N, fieldType='dhdt', fieldComp='z')) txList1 = [VRM.Src.MagDipole(rxList1, loc_tx, [1., 1., 1.], waveObj)] txList2 = [VRM.Src.MagDipole(rxList2, loc_tx, [1., 1., 1.], waveObj)] Survey1 = VRM.Survey(txList1) Survey2 = VRM.Survey(txList2) Problem1 = VRM.Problem_Linear(meshObj_Tensor, ref_factor=2, ref_radius=[1.9, 3.6]) Problem2 = VRM.Problem_Linear(meshObj_Tensor, ref_factor=2, ref_radius=[1.9, 3.6]) Problem1.pair(Survey1) Problem2.pair(Survey2) Fields1 = Problem1.fields(mod) Fields2 = Problem2.fields(mod) Err = np.abs(Fields1 - Fields2) Test = np.all(Err < 1e-6) self.assertTrue(Test)
def test_vs_mesh_vs_loguniform(self): """ Test to make sure OcTree matches Tensor results and linear vs loguniform match """ h1 = [(2, 4)] h2 = 0.5 * np.ones(16) meshObj_Tensor = Mesh.TensorMesh((h1, h1, h1), x0='000') meshObj_OcTree = Mesh.TreeMesh([h2, h2, h2], x0='000') x, y, z = np.meshgrid(np.c_[1., 3., 5., 7.], np.c_[1., 3., 5., 7.], np.c_[1., 3., 5., 7.]) x = x.reshape((4**3, 1)) y = y.reshape((4**3, 1)) z = z.reshape((4**3, 1)) loc_rx = np.c_[x, y, z] meshObj_OcTree.insert_cells(loc_rx, 2 * np.ones((4**3)), finalize=False) x, y, z = np.meshgrid(np.c_[1., 3., 5., 7.], np.c_[1., 3., 5., 7.], np.c_[5., 7.]) x = x.reshape((32, 1)) y = y.reshape((32, 1)) z = z.reshape((32, 1)) loc_rx = np.c_[x, y, z] meshObj_OcTree.insert_cells(loc_rx, 3 * np.ones((32)), finalize=False) x, y, z = np.meshgrid(np.c_[3.5, 4.0, 4.5, 5.0, 5.5], np.c_[3.5, 4.0, 4.5, 5.0, 5.5], np.c_[6.0, 6.5, 7.0, 7.5]) x = x.reshape((100, 1)) y = y.reshape((100, 1)) z = z.reshape((100, 1)) loc_rx = np.c_[x, y, z] meshObj_OcTree.insert_cells(loc_rx, 4 * np.ones((100)), finalize=True) chi0 = 0. dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 # Tensor Models mod_a = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj_Tensor.nC) mod_chi0_a = chi0 * np.ones(meshObj_Tensor.nC) mod_dchi_a = dchi * np.ones(meshObj_Tensor.nC) mod_tau1_a = tau1 * np.ones(meshObj_Tensor.nC) mod_tau2_a = tau2 * np.ones(meshObj_Tensor.nC) # OcTree Models mod_b = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj_OcTree.nC) mod_chi0_b = chi0 * np.ones(meshObj_OcTree.nC) mod_dchi_b = dchi * np.ones(meshObj_OcTree.nC) mod_tau1_b = tau1 * np.ones(meshObj_OcTree.nC) mod_tau2_b = tau2 * np.ones(meshObj_OcTree.nC) times = np.array([1e-3]) waveObj = VRM.WaveformVRM.SquarePulse(delt=0.02) loc_rx = np.c_[4., 4., 8.25] rxList = [ VRM.Rx.Point(loc_rx, times=times, fieldType='dhdt', fieldComp='z') ] txList = [ VRM.Src.MagDipole(rxList, np.r_[4., 4., 8.25], [0., 0., 1.], waveObj) ] Survey1 = VRM.Survey(txList) Survey2 = VRM.Survey(txList) Survey3 = VRM.Survey(txList) Survey4 = VRM.Survey(txList) Problem1 = VRM.Problem_Linear(meshObj_Tensor, ref_factor=2, ref_radius=[1.9, 3.6]) Problem2 = VRM.Problem_LogUniform(meshObj_Tensor, ref_factor=2, ref_radius=[1.9, 3.6], chi0=mod_chi0_a, dchi=mod_dchi_a, tau1=mod_tau1_a, tau2=mod_tau2_a) Problem3 = VRM.Problem_Linear(meshObj_OcTree, ref_factor=0) Problem4 = VRM.Problem_LogUniform(meshObj_OcTree, ref_factor=0, chi0=mod_chi0_b, dchi=mod_dchi_b, tau1=mod_tau1_b, tau2=mod_tau2_b) Problem1.pair(Survey1) Problem2.pair(Survey2) Problem3.pair(Survey3) Problem4.pair(Survey4) Fields1 = Problem1.fields(mod_a) Fields2 = Problem2.fields() Fields3 = Problem3.fields(mod_b) Fields4 = Problem4.fields() dpred1 = Survey1.dpred(mod_a) dpred2 = Survey2.dpred(mod_a) Err1 = np.abs((Fields1 - Fields2) / Fields1) Err2 = np.abs((Fields2 - Fields3) / Fields2) Err3 = np.abs((Fields3 - Fields4) / Fields3) Err4 = np.abs((Fields4 - Fields1) / Fields4) Err5 = np.abs((dpred1 - dpred2) / dpred1) Test1 = Err1 < 0.01 Test2 = Err2 < 0.01 Test3 = Err3 < 0.01 Test4 = Err4 < 0.01 Test5 = Err5 < 0.01 self.assertTrue(Test1 and Test2 and Test3 and Test4 and Test5)
loc = np.c_[mkvc(x), mkvc(y), mkvc(z)] # Src and Rx Locations src_list_vrm = [] for pp in range(0, loc.shape[0]): loc_pp = np.reshape(loc[pp, :], (1, 3)) rx_list_vrm = [ VRM.Rx.Point(loc_pp, times=times, fieldType='dbdt', fieldComp='z') ] src_list_vrm.append( VRM.Src.MagDipole(rx_list_vrm, mkvc(loc[pp, :]), [0., 0., 0.01], waveform)) survey_vrm = VRM.Survey(src_list_vrm) ########################################################################## # Problem # ------- # # For the VRM problem, we used a sensitivity refinement strategy for cells # that are proximal to transmitters. This is controlled through the # *ref_factor* and *ref_radius* properties. # # Defining the problem problem_vrm = VRM.Problem_Linear(mesh, indActive=topoCells, ref_factor=3, ref_radius=[1.25, 2.5, 3.75])
def test_vs_mesh_vs_loguniform(self): """ Test to make sure OcTree matches Tensor results and linear vs loguniform match """ h1 = [(2, 4)] h2 = 0.5 * np.ones(16) meshObj_Tensor = Mesh.TensorMesh((h1, h1, h1), x0='000') meshObj_OcTree = Mesh.TreeMesh([h2, h2, h2], x0='000') meshObj_OcTree.refine(2) def refinefcn(cell): xyz = cell.center dist = ((xyz - [4., 4., 8.])**2).sum()**0.5 if dist < 2.65: return 4 return 2 meshObj_OcTree.refine(refinefcn) chi0 = 0. dchi = 0.01 tau1 = 1e-8 tau2 = 1e0 # Tensor Models mod_a = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj_Tensor.nC) mod_chi0_a = chi0 * np.ones(meshObj_Tensor.nC) mod_dchi_a = dchi * np.ones(meshObj_Tensor.nC) mod_tau1_a = tau1 * np.ones(meshObj_Tensor.nC) mod_tau2_a = tau2 * np.ones(meshObj_Tensor.nC) # OcTree Models mod_b = (dchi / np.log(tau2 / tau1)) * np.ones(meshObj_OcTree.nC) mod_chi0_b = chi0 * np.ones(meshObj_OcTree.nC) mod_dchi_b = dchi * np.ones(meshObj_OcTree.nC) mod_tau1_b = tau1 * np.ones(meshObj_OcTree.nC) mod_tau2_b = tau2 * np.ones(meshObj_OcTree.nC) times = np.array([1e-3]) waveObj = VRM.WaveformVRM.SquarePulse(0.02) loc_rx = np.c_[4., 4., 8.25] # rxList = [VRM.Rx.Point_dhdt(loc_rx, times, 'z')] rxList = [VRM.Rx.Point(loc_rx, times, 'dhdt', 'z')] txList = [ VRM.Src.MagDipole(rxList, np.r_[4., 4., 8.25], [0., 0., 1.], waveObj) ] Survey1 = VRM.Survey(txList) Survey2 = VRM.Survey(txList) Survey3 = VRM.Survey(txList) Survey4 = VRM.Survey(txList) Problem1 = VRM.Problem_Linear(meshObj_Tensor, refFact=2, refRadius=[1.9, 3.6]) Problem2 = VRM.Problem_LogUniform(meshObj_Tensor, refFact=2, refRadius=[1.9, 3.6], chi0=mod_chi0_a, dchi=mod_dchi_a, tau1=mod_tau1_a, tau2=mod_tau2_a) Problem3 = VRM.Problem_Linear(meshObj_OcTree, refFact=0) Problem4 = VRM.Problem_LogUniform(meshObj_OcTree, refFact=0, chi0=mod_chi0_b, dchi=mod_dchi_b, tau1=mod_tau1_b, tau2=mod_tau2_b) Problem1.pair(Survey1) Problem2.pair(Survey2) Problem3.pair(Survey3) Problem4.pair(Survey4) Fields1 = Problem1.fields(mod_a) Fields2 = Problem2.fields() Fields3 = Problem3.fields(mod_b) Fields4 = Problem4.fields() dpred1 = Survey1.dpred(mod_a) dpred2 = Survey2.dpred(mod_a) Err1 = np.abs((Fields1 - Fields2) / Fields1) Err2 = np.abs((Fields2 - Fields3) / Fields2) Err3 = np.abs((Fields3 - Fields4) / Fields3) Err4 = np.abs((Fields4 - Fields1) / Fields4) Err5 = np.abs((dpred1 - dpred2) / dpred1) Test1 = Err1 < 0.001 Test2 = Err2 < 0.001 Test3 = Err3 < 0.001 Test4 = Err4 < 0.001 Test5 = Err5 < 0.001 self.assertTrue(Test1 and Test2 and Test3 and Test4 and Test5)