'time' ] for set in range(6): preFill = nol[set] * ll[set] * nof[set] // 10 st = VVR_Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=0, cc_file='./csv_files/cost.csv') s = Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=0, VVR_temp=st, cc_file='./csv_files/cost.csv', color_dist_file='./csv_files/total_orders.csv', repeat=0) repeat_epoches = 10 # print(s.mc_tab) # print(s.bank.get_view_state()) # print(s.bank.front_hist()) # print(s.bank.front_view()) cc_sum = 0 t_sum = 0 for epoch in range(repeat_epoches): s.reset()
# for set in range(6): set = 3 pres = [0.2, 0.4, 0.5, 0.6, 0.8] for pref in pres: preFill = nol[set] * ll[set] * nof[set] // 10 st = VVR_Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=preFill, preference=pref) s = Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=preFill, VVR_temp=st, repeat=100, preference=pref) repeat_epoches = 1 # print(s.mc_tab) # print(s.bank.get_view_state()) # print(s.bank.front_hist()) # print(s.bank.front_view()) cc_sum = 0 td_sum = 0 t_sum = 0 for epoch in range(repeat_epoches): s.reset()
paras = [] noc = [10, 20, 10, 20, 10, 20] nom = [5, 10, 5, 10, 5, 10] ll = [6, 6, 8, 8, 10, 10] nol = [5, 5, 7, 7, 10, 10] nof=[7,7,6,6,6,6] ccs=[] data=[noc,nom,nol,ll,nof] times=[] columns=['colors','models','lanes','lane length', 'filling','color change'] for set in range(6): preFill = nol[set]*ll[set]*nof[set] // 10 st = VVR_Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=0) s = Sim(num_color=noc[set], num_model=nom[set], num_lanes=nol[set], lane_length=ll[set], capacity=0, VVR_temp=st) repeat_epoches=10 # print(s.mc_tab) # print(s.bank.get_view_state()) # print(s.bank.front_hist()) # print(s.bank.front_view()) cc_sum = 0 for epoch in range(repeat_epoches): start_time = time.time() s.reset() for i in range(1000): # sp.bank_c.state=copy.deepcopy(s.bank_c.state) if i%200==0: print(i, ' out of 1000 finihsed! ', epoch, ' out of 10 epcoh')
from Simulator import Simulator as Sim import GraphGenerator as graph import os as os from DataPool import DataPool as Data from File_handler import File_handler as fileMaintainer if __name__ == '__main__': print("Welcome to COVID-19 simulator!") people = input("How many people would you like in the simulation? ") days = input("Over how many days would you like to simulate? ") sim = Sim(people, days) sim.simulate() while True: num = int( input( "Which graph would you like to check? \n Press ( 1 ) for asymptamatic \n Press ( 2 ) for symptamatic \n Press ( 3 ) for hospitalised \n Press ( 4 ) for ICU-ed \n Press ( 5 ) for ventilator cases \n Press ( 6 ) for death \n Press ( 7 ) for immune \n Press ( 8 ) for recovered \n Press ( 9 ) to exit" )) if num is 9: break age = int( input( "Press ( 1 ) for checking the trend among kids \n Press ( 2 ) for checking the trend among the youth \n Press ( 3 ) for checking the trend among the adults \n Press ( 4 ) to check overall trend " )) if num is 1: if age is 1: graph.generate(sim, sim.asympKidNum) if age is 2: graph.generate(sim, sim.asympYoungNum) if age is 3:
from VVR_Bank import VVR_Bank as Bank import numpy as np from Simulator import Simulator as Sim from VVR_Simulator import VVR_Simulator as vSim import time st = vSim( num_color=14, num_model=7, num_lanes=7, lane_length=8, ) s = Sim(num_color=14, num_model=7, num_lanes=7, lane_length=8, capacity=0, VVR_temp=st, cc_file='./csv_files/cost.csv') preFill = 30 ccsum = 0 start_time = time.time() for rep in range(1): s.reset() for i in range(1000): # sp.bank_c.state=copy.deepcopy(s.bank_c.state) if i % 10 == 0: print(i, ' out of 1000 finihsed') if i < 2000: s.BBA_rule_step_in() if i > preFill:
if __name__ == "__main__": """ This is the main method to get data, setup an agent, and simulate trading. """ qlearning_values = [] buyholdvalue = 0 rounds = 10 for i in range(0, rounds): print('Starting round: ' + str(i + 1) + '/' + str(rounds)) starting_cash = 100000 max_position = 100 symbol = 'TSLA' df = get_data() # Train agent, then get trades for target timeframe agent = Agent(max_position=max_position, starting_cash=starting_cash) agent.train(df, symbol) orders = agent.test(df, symbol) # simulate trades simulator = Sim(max_position=max_position, starting_cash=starting_cash) qvalue, buyholdvalue = simulator.simulate(df, symbol, orders, i == 9) # graph last round qlearning_values.append(qvalue) print("Policy has earned and average of: $" + str(round(np.average(qlearning_values) - starting_cash, 2))) print("BuyHold has earned: $" + str(round(buyholdvalue - starting_cash, 2)))