Exemplo n.º 1
0
    def test_basic_mpi_functionality(self):
        """
        Test basic MPI functionality
        """
        temp_input_filename = os.path.join(SIRISAACDIR,
                                           "temporary_input_{}.dat".format(os.getpid()))
        temp_output_filename = os.path.join(SIRISAACDIR,
                                            "temporary_output_{}.dat".format(os.getpid()))
        temp_stdout_filename = os.path.join(SIRISAACDIR,
                                            "temporary_stdout_{}.txt".format(os.getpid()))
        
        input_data = {'test':123,'output_filename':temp_output_filename}
        save(input_data,temp_input_filename)
        stdoutFile = open(temp_stdout_filename,'w')
        subprocess.call([ "mpirun","-np",str(NUMPROCS),"python",
                          os.path.join(SIRISAACDIR, "mpi_basic.py"),
                          temp_input_filename ],
                          stderr=stdoutFile,stdout=stdoutFile,
                          env=os.environ)
        output_data = load(temp_output_filename)
        os.remove(temp_input_filename)
        os.remove(temp_output_filename)
        os.remove(temp_stdout_filename)

        self.assertTrue(input_data['test'] == output_data['test_output'])
def subsetsWithFits(fileNumString,onlyNew=False):
    """
    Find data subsets (N) that have models that have been fit to
    all conditions.
    
    onlyNew (False)         : Optionally include only subsets that have
                              fits that are not included in the current
                              combined fitProbs.
    """
    fpd = loadFitProbData(fileNumString)
    saveFilename = fpd.values()[0]['saveFilename']
    
    Nlist = []
    for N in scipy.sort(fpd.keys()):
        # find models that have been fit to all conditions
        if len(fpd[N]['fitProbDataList']) == 1:
            fitModels = fpd[N]['fitProbDataList'][0]['logLikelihoodDict'].keys()
        else:
            fitModels = scipy.intersect1d([ fp['logLikelihoodDict'].keys() \
                                            for fp in fpd[N]['fittingProblemList'] ])
        if onlyNew:
            Nfilename = directoryPrefixNonly(fileNumString,N)+'/'+saveFilename
            fileExists = os.path.exists(Nfilename)
            if not fileExists: # no combined file exists
                if len(fitModels) > 0:
                    Nlist.append(N)
            else: # check which fit models are currently included in the saved file
                fpMultiple = load(Nfilename)
                fitModelsSaved = fpMultiple.logLikelihoodDict.keys()
                if len(scipy.intersect1d(fitModels,fitModelsSaved)) < len(fitModels):
                    Nlist.append(N)
        else:
            if len(fitModels) > 0:
                Nlist.append(N)
    return Nlist
Exemplo n.º 3
0
def loadFitProbData(fileNumString):
    try:
        fitProbData = load(fileNumString + '_fitProbData.dat')
    except (IOError, EOFError):
        print "loadFitProbData: WARNING Unable to load fitProbData file."\
              "Returning None."
        fitProbData = None
    return fitProbData
def loadFitProbData(fileNumString):
    try:
        fitProbData = load(fileNumString+'_fitProbData.dat')
    except (IOError, EOFError):
        print "loadFitProbData: WARNING Unable to load fitProbData file."\
              "Returning None."
        fitProbData = None
    return fitProbData
Exemplo n.º 5
0
def subsetsWithFits(fileNumString, onlyNew=False):
    """
    Find data subsets (N) that have models that have been fit to
    all conditions.
    
    onlyNew (False)         : Optionally include only subsets that have
                              fits that are not included in the current
                              combined fitProbs.
    """
    fpd = loadFitProbData(fileNumString)
    saveFilename = fpd.values()[0]['saveFilename']

    Nlist = []
    for N in scipy.sort(fpd.keys()):
        # find models that have been fit to all conditions
        if len(fpd[N]['fitProbDataList']) == 1:
            fitModels = fpd[N]['fitProbDataList'][0]['logLikelihoodDict'].keys(
            )
        else:
            fitModels = scipy.intersect1d([ fp['logLikelihoodDict'].keys() \
                                            for fp in fpd[N]['fittingProblemList'] ])
        if onlyNew:
            Nfilename = directoryPrefixNonly(fileNumString,
                                             N) + '/' + saveFilename
            fileExists = os.path.exists(Nfilename)
            if not fileExists:  # no combined file exists
                if len(fitModels) > 0:
                    Nlist.append(N)
            else:  # check which fit models are currently included in the saved file
                fpMultiple = load(Nfilename)
                fitModelsSaved = fpMultiple.logLikelihoodDict.keys()
                if len(scipy.intersect1d(fitModels,
                                         fitModelsSaved)) < len(fitModels):
                    Nlist.append(N)
        else:
            if len(fitModels) > 0:
                Nlist.append(N)
    return Nlist
Exemplo n.º 6
0
def loadFitProb(saveFilename, fileNumString, conditioni, numTimepoints):
    dirPrefix = directoryPrefix(fileNumString, conditioni, numTimepoints)
    return load(dirPrefix + saveFilename)[numTimepoints]
Exemplo n.º 7
0
def combineFitProbs(fileNumString,
                    saveCombined=True,
                    combinedLean=True,
                    reset=False):
    """
    Combine fittingProblems from multiple conditions saved in the 
    parallel file structure into a single fittingProblemDict.
    
    Currently only includes data from models that have been fit to
    all conditions.
    
    saveCombined (True) : Overwrites any current top-level fitProbDict file
                          with a combined fitProbDict containing all 
                          numTimepoints.  Set to False to minimize memory use.
    combinedLean (True) : Combined fpd is saved without models to save memory.
    reset (False)       : If True, overwrite or delete any existing combined 
                          fitProbDicts.  This erases any existing 
                          outOfSampleCost information.
    """
    fitProbData = loadFitProbData(fileNumString)
    saveFilename = fitProbData.values()[0]['saveFilename']
    #save({},saveFilename)

    if saveCombined: fpdMultiple = {}

    fitSubsets = subsetsWithFits(fileNumString)
    subsetsToCombine = subsetsWithFits(fileNumString, onlyNew=not reset)

    for numTimepoints in fitSubsets:

        Nfilename = directoryPrefixNonly(fileNumString,
                                         numTimepoints) + '/' + saveFilename
        fileExists = os.path.exists(Nfilename)

        if fileExists and reset:
            # then an old combined file exists -- erase it to reset
            os.remove(Nfilename)
            fileExists = False
            print "combineFitProbs: Reset removed file for numTimepoints =", numTimepoints

        if numTimepoints in subsetsToCombine:  # combine
            oldOutOfSampleCostDict = {}
            if fileExists:  # grab any out-of-sample cost data
                fpMultiple = load(Nfilename)
                if hasattr(fpMultiple, 'outOfSampleCostDict'):
                    oldOutOfSampleCostDict = fpMultiple.outOfSampleCostDict

            p = fitProbData[numTimepoints]

            fpList = []
            for conditioni in range(len(p['fitProbDataList'])):
                fp = loadFitProb(saveFilename, fileNumString, conditioni,
                                 numTimepoints)
                fpList.append(fp)
            # make new multiple condition fitting problem by starting
            # with an empty fitting problem and inserting the fittingProblemList
            saveKey = p['saveKey']
            fp.stopFittingN = p['stopFittingN']
            fpMultiple = FittingProblemMultipleCondition([], [],
                                                         saveFilename=None,
                                                         saveKey=saveKey,
                                                         fp0=fp)
            fpMultiple.fittingProblemList = fpList
            fpMultiple.outOfSampleCostDict = oldOutOfSampleCostDict

            # Populate the logLikelihoodDict, etc by running fitAll.
            fpMultiple.fitAll(onlyCombine=True)

            if saveCombined: fpdMultiple[numTimepoints] = fpMultiple

            save(fpMultiple, Nfilename)

            print "combineFitProbs: Done with numTimepoints =", numTimepoints

        else:  # no new fits to combine; just load from file

            if saveCombined: fpdMultiple[numTimepoints] = load(Nfilename)
            print "combineFitProbs: Done with numTimepoints =", numTimepoints

    if saveCombined:
        if combinedLean:
            makeFpdLean(fpdMultiple)
        save(fpdMultiple, saveFilename[:-4] + '_combined.dat')
def loadFitProb(saveFilename,fileNumString,conditioni,numTimepoints):
    dirPrefix = directoryPrefix(fileNumString,conditioni,numTimepoints)
    return load(dirPrefix+saveFilename)[numTimepoints]
def combineFitProbs(fileNumString,saveCombined=True,combinedLean=True,
                    reset=False):
    """
    Combine fittingProblems from multiple conditions saved in the 
    parallel file structure into a single fittingProblemDict.
    
    Currently only includes data from models that have been fit to
    all conditions.
    
    saveCombined (True) : Overwrites any current top-level fitProbDict file
                          with a combined fitProbDict containing all 
                          numTimepoints.  Set to False to minimize memory use.
    combinedLean (True) : Combined fpd is saved without models to save memory.
    reset (False)       : If True, overwrite or delete any existing combined 
                          fitProbDicts.  This erases any existing 
                          outOfSampleCost information.
    """
    fitProbData = loadFitProbData(fileNumString)
    saveFilename = fitProbData.values()[0]['saveFilename']
    #save({},saveFilename)
    
    if saveCombined: fpdMultiple = {}
    
    fitSubsets = subsetsWithFits(fileNumString)
    subsetsToCombine = subsetsWithFits(fileNumString,onlyNew=not reset)
    
    for numTimepoints in fitSubsets:
    
      Nfilename = directoryPrefixNonly(fileNumString,numTimepoints)+'/'+saveFilename
      fileExists = os.path.exists(Nfilename)
      
      if fileExists and reset:
          # then an old combined file exists -- erase it to reset
          os.remove(Nfilename)
          fileExists = False
          print "combineFitProbs: Reset removed file for numTimepoints =",numTimepoints
      
      if numTimepoints in subsetsToCombine: # combine
          oldOutOfSampleCostDict = {}
          if fileExists: # grab any out-of-sample cost data
              fpMultiple = load(Nfilename)
              if hasattr(fpMultiple,'outOfSampleCostDict'):
                  oldOutOfSampleCostDict = fpMultiple.outOfSampleCostDict
          
          p = fitProbData[numTimepoints]
          
          fpList = []
          for conditioni in range(len(p['fitProbDataList'])):
            fp = loadFitProb(saveFilename,fileNumString,conditioni,numTimepoints)
            fpList.append(fp)
          # make new multiple condition fitting problem by starting
          # with an empty fitting problem and inserting the fittingProblemList
          saveKey = p['saveKey']
          fp.stopFittingN = p['stopFittingN']
          fpMultiple = FittingProblemMultipleCondition([],[],saveFilename=None,
                                                       saveKey=saveKey,fp0=fp)
          fpMultiple.fittingProblemList = fpList
          fpMultiple.outOfSampleCostDict = oldOutOfSampleCostDict

          # Populate the logLikelihoodDict, etc by running fitAll.
          fpMultiple.fitAll(onlyCombine=True)
          
          if saveCombined: fpdMultiple[numTimepoints] = fpMultiple
          
          save(fpMultiple,Nfilename)
          
          print "combineFitProbs: Done with numTimepoints =",numTimepoints
      
      else: # no new fits to combine; just load from file
      
          if saveCombined: fpdMultiple[numTimepoints] = load(Nfilename)
          print "combineFitProbs: Done with numTimepoints =",numTimepoints
      


    if saveCombined:
        if combinedLean:
            makeFpdLean(fpdMultiple)
        save(fpdMultiple,saveFilename[:-4]+'_combined.dat')