def variance(data): varMean = mean(data) listDiffs = [] for eachNum in data: eachDiff = subtraction(eachNum, varMean) listDiffs.append(eachDiff) listSquares = [] for eachDiff in listDiffs: eachSquare = squaring(eachDiff) listSquares.append(eachSquare) return mean(listSquares)
def variance(num): Mean_var = mean(num) Man = [] for n in num: Variables = subtraction(n, Mean_var) Man.append(Variables) Squares = [] for Variables in Man: Square_var = square(Variables) Squares.append(Square_var) return mean(Squares)
def median(num): num.sort() length = len(num) result = None index1 = int(division(2, length)) if length % 2 == 0: index2 = int(subtraction(index1, 1)) value1 = num[index1] value2 = num[index2] result = mean([value1, value2]) else: result = num[index1] return float(result)
def zscore(data): dataMean = mean(data) stanDev = standard_deviation(data) listMinuses = [] for eachRaw in data: meanMinusRaw = subtraction(dataMean, eachRaw) listMinuses.append(meanMinusRaw) listZScores = [] for eachMinus in listMinuses: eachZ = division(stanDev, eachMinus) listZScores.append(eachZ) return listZScores
def zscore(num): Mean_var = mean(num) standardDev_var = standardDev(num) negative = [] for Raw_var in num: meanRaw = subtraction(Mean_var, Raw_var) negative.append(meanRaw) ZScore_var = [] for neg in negative: z = division(standardDev_var, neg) ZScore_var.append(z) return ZScore_var
def confidence_interval(sample): # finding sample standard deviation old_sample_size = len(sample) new_sample_size = subtraction(1, old_sample_size) sample_mean = mean(sample) subtract_mean_result = [] for item in sample: result = subtraction(sample_mean, item) subtract_mean_result.append(result) squared_list = [] for num in subtract_mean_result: squared_result = squaring(num) squared_list.append(squared_result) squared_list_total = 0 for num in squared_list: squared_list_total += num sample_variance = division(new_sample_size, squared_list_total) sample_deviation = squarerooting(sample_variance) # finding confidence interval confidence_level = .95 t_distribution = 2.262 # taken from t_distribution chart https://www.statisticshowto.com/probability-and-statistics/confidence-interval/#CISample confidence_minus_one = subtraction(confidence_level, 1) new_confidence = division(2, confidence_minus_one) squareroot_of_sample = squarerooting(old_sample_size) CI = division(squareroot_of_sample, sample_deviation) interval = multiplication(CI, t_distribution) lower_end = subtraction(interval, sample_mean) upper_end = addition(interval, sample_mean) width = subtraction(lower_end, upper_end) return [lower_end, upper_end, width]
def mean(self, data): self.result = mean(data) return self.result