Exemplo n.º 1
0
    def Fit(self):
        """Run the fitting code."""
        self.Discard().Normalise().offset_correct()
        chi2= self.p0.shape[0]>1

        method=getattr(self,self.method)

        if not chi2: # Single fit mode, consider whether to plot and save etc
            fit=method(self.model,p0=self.p0,result=True,header="Fit",output="report")

            if self.show_plot:
                self.plot_results()
            if self.save_fit:
                self.save(False)
            if self.report:
                print(fit.fit_report())
            return fit
        else: #chi^2 mapping mode
            d=Data(self)
            fit = d.lmfit(self.model, p0=self.p0, result=True, header="Fit", output="data")

            if self.show_plot:
                fit.plot(multiple="panels",capsize=3)
                fit.yscale = "log"  # Adjust y scale for chi^2
                fit.tight_layout()
            if self.save_fit:
                fit.filename=None
                fit.save(False)
Exemplo n.º 2
0
    def Fit(self):
        """Run the fitting code."""
        self.Discard().Normalise().offset_correct()
        chi2 = self.p0.shape[0] > 1

        method = getattr(self, self.method)

        if not chi2:  # Single fit mode, consider whether to plot and save etc
            fit = method(
                self.model,
                p0=self.p0,
                result=True,
                header="Fit",
                output="report",
            )

            if self.show_plot:
                self.plot_results()
            if self.save_fit:
                self.save(False)
            if self.report:
                print(fit.fit_report())
            return fit
        d = Data(self)
        fit = d.lmfit(
            self.model, p0=self.p0, result=True, header="Fit", output="data"
        )

        if self.show_plot:
            fit.plot(multiple="panels", capsize=3)
            fit.yscale = "log"  # Adjust y scale for chi^2
            fit.tight_layout()
        if self.save_fit:
            fit.filename = None
            fit.save(False)
Exemplo n.º 3
0
class AnalysisMixins_test(unittest.TestCase):
    """Path to sample Data File"""
    datadir = path.join(pth, "sample-data")

    def setUp(self):

        x_data = np.linspace(-10, 10, 101)
        y_data = 0.01 * x_data**2 + 0.3 * x_data - 2

        y_data *= np.random.normal(size=101, loc=1.0, scale=0.01)
        x_data += np.random.normal(size=101, scale=0.02)

        self.data = Data(x_data, y_data, column_headers=["X", "Y"])
        self.data.setas = "xy"

    def test_cuve_fit(self):
        for output, fmt in zip(["fit", "row", "full", "dict", "data"],
                               [tuple, np.ndarray, tuple, dict, Data]):
            res = self.data.curve_fit(fit, p0=[0.02, 0.2, 2], output=output)
            self.assertTrue(
                isinstance(res, fmt),
                "Failed to get expected output from curve_fit for {} (got {})".
                format(output, type(res)))

    def test_lmfit(self):
        for output, fmt in zip(["fit", "row", "full", "dict", "data"],
                               [tuple, np.ndarray, tuple, dict, Data]):
            res = self.data.lmfit(fit, p0=[0.02, 0.2, 2], output=output)
            self.assertTrue(
                isinstance(res, fmt),
                "Failed to get expected output from lmfit for {} (got {})".
                format(output, type(res)))

    def test_odr(self):
        for output, fmt in zip(["fit", "row", "full", "dict", "data"],
                               [tuple, np.ndarray, tuple, dict, Data]):
            res = self.data.odr(fit, p0=[0.02, 0.2, 2], output=output)
            self.assertTrue(
                isinstance(res, fmt),
                "Failed to get expected output from idr for {} (got {})".
                format(output, type(res)))

    def test_differential_evolution(self):
        for output, fmt in zip(["fit", "row", "full", "dict", "data"],
                               [tuple, np.ndarray, tuple, dict, Data]):
            res = self.data.differential_evolution(fit,
                                                   p0=[0.02, 0.2, 2],
                                                   output=output)
            self.assertTrue(
                isinstance(res, fmt),
                "Failed to get expected output from differential_evolution for {} (got {})"
                .format(output, type(res)))
Exemplo n.º 4
0
from numpy import linspace, ones_like
from numpy.random import normal
from copy import deepcopy

T = linspace(4.2, 300, 101)
params = [265, 65, 1.0, 5]
params2 = deepcopy(params)
G = SF.blochGrueneisen(T, *params) + normal(size=len(T), scale=5E-5)
dG = ones_like(T) * 5E-5
d = Data(T,
         G,
         dG,
         setas="xye",
         column_headers=["Temperature (K)", "Resistivity", "dR"])

d.curve_fit(SF.blochGrueneisen, p0=params, result=True, header="curve_fit")

d.setas = "xy"
d.lmfit(SF.BlochGrueneisen, p0=params2, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(SF.blochGrueneisen, x=20, y=65.05, fontdict={"size": "x-small"})
d.annotate_fit(SF.BlochGrueneisen,
               x=100,
               y=65,
               fontdict={"size": "x-small"},
               prefix="BlochGrueneisen")
d.title = "Bloch-Grueneisen Fit"
d.tight_layout()
Exemplo n.º 5
0
sensitivity=50

critical_edge=0.8
fringe_offset=1

d=Data(filename,setas="xy") #Load the low angle scan

#Now get the section of the data file that has the peak positions
# This is really doing the hard work
# We differentiate the data using a Savitsky-Golay filter with a 5 point window fitting quartics.
# This has proved most succesful for me looking at some MdV data.
# We then threshold for zero crossing of the derivative
# And check the second derivative to see whether we like the peak as signficant. This is the significance parameter
# and seems to be largely empirical
# Finally we interpolate back to the complete data set to make sure we get the angle as well as the counts.
d.lmfit(ExponentialModel,result=True,replace=False,header="Envelope")
d.subtract("Counts","Envelope",replace=False,header="peaks")
d.setas="xy"
sys.exit()
t=Data(d.interpolate(d.peaks(significance=sensitivity,width=8,poly=4)))

t.column_headers=copy(d.column_headers)
d%='peaks'
t%='peaks'
d.setas="xy"
d.labels[d.find_col('Angle')]=r"Reflection Angle $\theta$"
t.del_rows(0, lambda x,y: x<critical_edge)
t.setas="xy"
t.template.fig_width=7.0
t.template.fig_height=5.0
t.plot(fmt='go',  plotter=pyplot.semilogy)
Exemplo n.º 6
0
d.setas = "xy"
d.curve_fit(SF.quadratic, result=True, header="Curve-fit")
d.setas = "x...y"
d.plot(fmt="b-", label="curve-fit")
d.annotate_fit(
    SF.quadratic,
    prefix="quadratic",
    x=0.2,
    y=0.65,
    fontdict={"size": "x-small", "color": "blue"},
)

d.setas = "xy"
fit = SF.Quadratic()
p0 = fit.guess(y, x=x)
d.lmfit(SF.Quadratic, p0=p0, result=True, header="lmfit")

d.setas = "x...y"
d.plot(fmt="g-", label="lmfit")
d.annotate_fit(
    SF.Quadratic,
    prefix="Quadratic",
    x=0.65,
    y=0.65,
    fontdict={"size": "x-small", "color": "green"},
)

d.title = "Qudratic Fitting"
plt.legend(loc=4)
Exemplo n.º 7
0
sensitivity = 50

critical_edge = 0.8
fringe_offset = 1

d = Data(filename, setas="xy")  # Load the low angle scan

# Now get the section of the data file that has the peak positions
# This is really doing the hard work
# We differentiate the data using a Savitsky-Golay filter with a 5 point window fitting quartics.
# This has proved most succesful for me looking at some MdV data.
# We then threshold for zero crossing of the derivative
# And check the second derivative to see whether we like the peak as signficant. This is the significance parameter
# and seems to be largely empirical
# Finally we interpolate back to the complete data set to make sure we get the angle as well as the counts.
d.lmfit(ExponentialModel, result=True, replace=False, header="Envelope")
d.subtract("Counts", "Envelope", replace=False, header="peaks")
d.setas = "xy"
sys.exit()
t = Data(d.interpolate(d.peaks(significance=sensitivity, width=8, poly=4)))

t.column_headers = copy(d.column_headers)
d %= "peaks"
t %= "peaks"
d.setas = "xy"
d.labels[d.find_col("Angle")] = r"Reflection Angle $\theta$"
t.del_rows(0, lambda x, y: x < critical_edge)
t.setas = "xy"
t.template.fig_width = 7.0
t.template.fig_height = 5.0
t.plot(fmt="go", plotter=pyplot.semilogy)
Exemplo n.º 8
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Fit Ic(B) to Airy function.
"""

from Stoner import Data, __home__
from Stoner.Fit import Ic_B_Airy

import os

os.chdir(os.path.join(__home__, "..", "doc", "samples", "Fitting"))

data = Data("data/Ic_B.txt", setas={"x": "Magnet Output", "y": "Ic"})

data.lmfit(Ic_B_Airy, result=True, header="Fit")

data.setas = {"x": "Magnet Output", "y": ["Ic", "Fit"]}
data.plot(fmt=["r+", "b-"])

data.annotate_fit(Ic_B_Airy, mode="eng", x=0.6, y=0.5, fontsize="small")

data.title = "Critical current vs Field for $4\mu m$ junction"
data.xlabel = r"Magnetic Field $\mu_0H (\mathrm{T})$"
data.ylabel = r"Critical Current $I_c (A)$"
Exemplo n.º 9
0
R = vftEquation(T, *params) * normal(size=len(T), scale=noise, loc=1.0)
dR = vftEquation(T, *params) * noise
d = Data(T, R, dR, setas="xy.", column_headers=["T", "Rate"])

# Plot the data points.
d.plot(fmt="r.", label="Data Points")

# Turn on the sigma column (error bars look messy on plot due to logscale)
d.setas[2] = "e"

# Curve_fit on its own
d.curve_fit(vftEquation, p0=params, result=True, header="curve_fit")

# lmfit uses some guesses
p0 = params
d.lmfit(VFTEquation, p0=p0, result=True, header="lmfit")

# Plot these results too
d.setas = "x..yy"
d.plot(fmt=["b-", "g-"])
# Annotate the graph
d.annotate_fit(
    vftEquation,
    x=0.25,
    y=0.35,
    fontdict={"size": "x-small", "color": "blue"},
    mode="eng",
)
d.annotate_fit(
    VFTEquation,
    x=0.5,
Exemplo n.º 10
0
        result.e = result.e / mu_0

        resfldr += result  # Stash the results

    # Merge the two field signs into a single file, taking care of the error columns too
    result = resfldr[0].clone
    for c in [0, 2, 4, 6, 8, 9, 10]:
        result.data[:, c] = (resfldr[1][:, c] + resfldr[0][:, c]) / 2.0
    for c in [1, 3, 5, 7]:
        result.data[:, c] = gmean((resfldr[0][:, c], resfldr[1][:, c]), axis=0)

    # Doing the Kittel fit with an orthogonal distance regression as we have x errors not y errors
    p0 = [2, 200e3, 10e3]  # Some sensible guesses
    result.lmfit(Inverse_Kittel,
                 p0=p0,
                 result=True,
                 header="Kittel Fit",
                 output="report")
    result.setas[-1] = "y"

    result.template.yformatter = TexEngFormatter
    result.template.xformatter = TexEngFormatter
    result.labels = None
    result.figure(figsize=(6, 8))
    result.subplot(211)
    result.plot(fmt=["r.", "b-"])
    result.annotate_fit(Inverse_Kittel, x=7e9, y=1e5, fontdict={"size": 8})
    result.ylabel = "$H_{res} \\mathrm{(Am^{-1})}$"
    result.title = "Inverse Kittel Fit"

    # Get alpha
Exemplo n.º 11
0
@simple_model.guesser
def guess_vals(y, x=None):
    """Should guess parameter values really!"""
    m = (y.max() - y.min()) / (x[y.argmax()] - x[y.argmin()])
    c = x.mean() * m - y.mean()  # return one value per parameter
    return [m, c]


# Add a function to sry vonstraints on parameters (optional)
@simple_model.hinter
def hint_parameters():
    """Five some hints about the parameter."""
    return {"m": {"max": 10.0, "min": 0.0}, "c": {"max": 5.0, "min": -5.0}}


# Create some x,y data
x = linspace(0, 10, 101)
y = 4.5 * x - 2.3 + normal(scale=0.4, size=len(x))

# Make The Data object
d = Data(x, y, setas="xy", column_headers=["X", "Y"])

# Do the fit
d.lmfit(simple_model, result=True)

# Plot the result
d.setas = "xyy"
d.plot(fmt=["r+", "b-"])
d.title = "Simple Model Fit"
d.annotate_fit(simple_model, x=0.05, y=0.5)
Exemplo n.º 12
0
"""Simple use of lmfit to fit data."""
from Stoner import Data
from numpy import linspace, exp, random

#Make some data
x = linspace(0, 10.0, 101)
y = 2 + 4 * exp(-x / 1.7) + random.normal(scale=0.2, size=101)

d = Data(x, y, column_headers=["Time", "Signal"], setas="xy")

#Do the fitting and plot the result
func = lambda x, A, B, C: A + B * exp(-x / C)
fit = d.lmfit(func, result=True, header="Fit", A=1, B=1, C=1, residuals=True)

#Reset labels
d.labels = []

# Make nice two panel plot layout
ax = d.subplot2grid((3, 1), (2, 0))
d.setas = "x..y"
d.plot(fmt="g+")
d.title = ""

ax = d.subplot2grid((3, 1), (0, 0), rowspan=2)
d.setas = "xyy"
d.plot(fmt=["ro", "b-"])
d.xticklabels = [[]]
d.xlabel = ""

# Annotate plot with fitting parameters
d.annotate_fit(func,
Exemplo n.º 13
0
        result.y = result.y / mu_0  # Convert to A/m
        result.e = result.e / mu_0

        resfldr += result  # Stash the results

    # Merge the two field signs into a single file, taking care of the error columns too
    result = resfldr[0].clone
    for c in [0, 2, 4, 6, 8, 9, 10]:
        result.data[:, c] = (resfldr[1][:, c] + resfldr[0][:, c]) / 2.0
    for c in [1, 3, 5, 7]:
        result.data[:, c] = gmean((resfldr[0][:, c], resfldr[1][:, c]), axis=0)

    # Doing the Kittel fit with an orthogonal distance regression as we have x errors not y errors
    p0 = [2, 200e3, 10e3]  # Some sensible guesses
    result.lmfit(
        Inverse_Kittel, p0=p0, result=True, header="Kittel Fit", output="report"
    )
    result.setas[-1] = "y"

    result.template.yformatter = TexEngFormatter
    result.template.xformatter = TexEngFormatter
    result.labels = None
    result.figure(figsize=(6, 8))
    result.subplot(211)
    result.plot(fmt=["r.", "b-"])
    result.annotate_fit(Inverse_Kittel, x=7e9, y=1e5, fontdict={"size": 8})
    result.ylabel = "$H_{res} \\mathrm{(Am^{-1})}$"
    result.title = "Inverse Kittel Fit"

    # Get alpha
    result.subplot(212)
Exemplo n.º 14
0
d = Data(V, I, dI, setas="xye", column_headers=["Bias", "Current", "Noise"])

d.curve_fit(SF.simmons, p0=[2500, 5.2, 15.0], result=True, header="curve_fit")
d.setas = "xyey"
d.plot(fmt=["r.", "b-"])
d.annotate_fit(
    SF.simmons,
    x=0.25,
    y=0.25,
    prefix="simmons",
    fontdict={"size": "x-small", "color": "blue"},
)

d.setas = "xye"
fit = SF.Simmons()
p0 = [2500, 5.2, 15.0]
d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
    fit,
    x=0.65,
    y=0.25,
    prefix="Simmons",
    fontdict={"size": "x-small", "color": "green"},
)

d.ylabel = "Current"
d.title = "Simmons Model test"
d.tight_layout()
Exemplo n.º 15
0
         column_headers=["Temperature", "Magnetization", "dM"],
         setas="xye")

d.curve_fit(
    blochLaw,
    p0=[1500, 1500],
    result=True,
    header="curve_fit",
    prefix="curve_fit",
    bounds=lambda x, r: not isnan(r.y),
)

d.lmfit(
    BlochLaw,
    result=True,
    header="lmfit",
    prefix="lmfit",
    bounds=lambda x, r: not isnan(r.y),
)

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(
    blochLaw,
    x=0.1,
    y=0.5,
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
Exemplo n.º 16
0
"""Simple use of lmfit to fit data."""
from Stoner import Data
from numpy import linspace,exp,random

#Make some data
x=linspace(0,10.0,101)
y=2+4*exp(-x/1.7)+random.normal(scale=0.2,size=101)

d=Data(x,y,column_headers=["Time","Signal"],setas="xy")

d.plot(fmt="ro") # plot our data

#Do the fitting and plot the result
fit = d.lmfit(lambda x,A,B,C:A+B*exp(-x/C),result=True,header="Fit",A=1,B=1,C=1)
d.setas="x.y"
d.labels=[]
d.plot(fmt="b-")

# Make nice label of the parameters
text=r"$y=A+Be^{-x/C}$"+"\n\n"
text+="\n".join([d.format(k,latex=True) for k in ["Model:A","Model:B","Model:C"]])
d.text(5,4,text,fontdict={"size":"x-small"})
"""Example of using lmfit to do a bounded fit."""
from Stoner import Data
from Stoner.Fit import StretchedExp

#Load dat and plot
d = Data("lmfit_data.txt", setas="xy")

# Do the fit
d.lmfit(StretchedExp, result=True, header="Fit", prefix="")
# plot
d.setas = "xyy"

d.plot(fmt=["+", "-"])
# Make apretty label using Stoner.Util methods
text = "$y=A\\exp\\left[\\left(-\\frac{x}{x_0}\\right)^\\beta\\right]$\n"
text += d.annotate_fit(StretchedExp, text_only=True)
d.text(6, 4E4, text)
#Adjust layout NB pass-through method to pyplot used here
d.tight_layout()
Exemplo n.º 18
0
    dG,
    setas="xye",
    column_headers=["Field $\\mu_0H (T)$", "Moment", "dM"],
)

func = lambda H, M_s, m: langevin(H, M_s, m, 250)

d.curve_fit(func, p0=copy(params)[0:2], result=True, header="curve_fit")

d.setas = "xye"
fit = Langevin()
fit.params = fit.guess(G, x=B)
fit.params["T"].value = 250
fit.params["T"].vary = False

d.lmfit(fit, p0=fit.params, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(
    func,
    x=0.1,
    y=0.5,
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
    mode="eng",
)
d.annotate_fit(
Exemplo n.º 19
0
import Stoner.Fit as SF
from numpy import linspace, ones_like
from numpy.random import normal
from copy import deepcopy

T = linspace(4.2, 300, 101)
params = [265, 65, 1.0, 5]
params2 = deepcopy(params)
G = SF.blochGrueneisen(T, *params) + normal(size=len(T), scale=5e-5)
dG = ones_like(T) * 5e-5
d = Data(T, G, dG, setas="xye", column_headers=["Temperature (K)", "Resistivity", "dR"])

d.curve_fit(SF.blochGrueneisen, p0=params, result=True, header="curve_fit")

d.setas = "xy"
d.lmfit(SF.BlochGrueneisen, p0=params2, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(SF.blochGrueneisen, x=0.65, y=0.35, fontdict={"size": "x-small"})
d.annotate_fit(
    SF.BlochGrueneisen,
    x=0.65,
    y=0.05,
    fontdict={"size": "x-small"},
    prefix="BlochGrueneisen",
)
d.title = "Bloch-Grueneisen Fit"
d.tight_layout()
Exemplo n.º 20
0
"""Simple use of lmfit to fit data."""
from Stoner import Data
from numpy import linspace, exp, random

# Make some data
x = linspace(0, 10.0, 101)
y = 2 + 4 * exp(-x / 1.7) + random.normal(scale=0.2, size=101)

d = Data(x, y, column_headers=["Time", "Signal"], setas="xy")

# Do the fitting and plot the result
func = lambda x, A, B, C: A + B * exp(-x / C)
fit = d.lmfit(
    func, result=True, header="Fit", A=1, B=1, C=1, residuals=True, output="report"
)

# Reset labels
d.labels = []

# Make nice two panel plot layout
ax = d.subplot2grid((3, 1), (2, 0))
d.setas = "x..y"
d.plot(fmt="g+")
d.title = ""

ax = d.subplot2grid((3, 1), (0, 0), rowspan=2)
d.setas = "xyy"
d.plot(fmt=["ro", "b-"])
d.xticklabels = [[]]
d.xlabel = ""
Exemplo n.º 21
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Fit IV data to various RSJ models
"""

from Stoner import Data, __home__
from Stoner.Fit import RSJ_Noiseless, RSJ_Simple

import os

os.chdir(os.path.join(__home__, "..", "doc", "samples", "Fitting"))

data = Data("data/IV.txt", setas={"x": "Current", "y": "Voltage"})

# Fit data with both versions of the RSJ model
data.lmfit(RSJ_Simple, result=True, header="Simple", prefix="simple")
data.lmfit(RSJ_Noiseless, result=True, header="Noiseless", prefix="noiseless")

# Set column assignments and plot the data and fits
data.setas = {"x": "Current", "y": ["Voltage", "Simple", "Noiseless"]}
data.plot(fmt=["r+", "b-", "g-"])

# Annotate fits
data.annotate_fit(
    RSJ_Simple, prefix="simple", mode="eng", x=0.15, y=0.1, fontsize="small"
)
data.annotate_fit(
    RSJ_Noiseless, prefix="noiseless", mode="eng", x=0.55, y=0.1, fontsize="small"
)
Exemplo n.º 22
0
d.setas = "xyey"
d.plot(fmt=["r,", "b-"], capsize=1)
d.annotate_fit(
    SF.simmons,
    x=0.25,
    y=0.25,
    prefix="simmons",
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
)

d.setas = "xye"
fit = SF.Simmons()
d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit", maxfev=2000)
d.setas = "x...y"
d.plot(fmt="g-", label="lmfit")
d.annotate_fit(
    fit,
    x=0.65,
    y=0.25,
    prefix="Simmons",
    fontdict={
        "size": "x-small",
        "color": "green"
    },
)

d.ylabel = "Current (A)"
d.xlabel = "Bias (V)"
Exemplo n.º 23
0
B = linspace(2, 100, 26)
params = [12.5, 0.75, 1e3]
G = SF.fluchsSondheimer(B, *params) + normal(size=len(B), scale=5e-5)
dG = ones_like(B) * 5e-5
d = Data(
    B,
    G,
    dG,
    setas="xye",
    column_headers=["Thickness (nm)", "Conductance", "dConductance"],
)

d.curve_fit(SF.fluchsSondheimer, p0=params, result=True, header="curve_fit")

d.setas = "xye"
d.lmfit(SF.FluchsSondheimer, p0=params, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(
    SF.fluchsSondheimer, x=0.2, y=0.6, fontdict={"size": "x-small", "color": "blue"}
)
d.annotate_fit(
    SF.FluchsSondheimer,
    x=0.2,
    y=0.4,
    fontdict={"size": "x-small", "color": "green"},
    prefix="FluchsSondheimer",
)
d.title = "Fluchs-Sondheimer Fit"
Exemplo n.º 24
0
B = linspace(-8, 8, 201)
params = [1e-3, 2.0, 0.25, 1.4]
G = SF.wlfit(B, *params) + normal(size=len(B), scale=5e-7)
dG = ones_like(B) * 5e-7
d = Data(
    B,
    G,
    dG,
    setas="xye",
    column_headers=["Field $\\mu_0H (T)$", "Conductance", "dConductance"],
)

d.curve_fit(SF.wlfit, p0=copy(params), result=True, header="curve_fit")

d.setas = "xye"
d.lmfit(SF.WLfit, p0=copy(params), result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(SF.wlfit, x=0.05, y=0.75, fontdict={"size": "x-small", "color": "blue"})
d.annotate_fit(
    SF.WLfit,
    x=0.05,
    y=0.5,
    fontdict={"size": "x-small", "color": "green"},
    prefix="WLfit",
)
d.title = "Weak Localisation Fit"
d.tight_layout()
Exemplo n.º 25
0
R = vftEquation(T, *params) * normal(size=len(T), scale=noise, loc=1.0)
dR = vftEquation(T, *params) * noise
d = Data(T, R, dR, setas="xy.", column_headers=["T", "Rate"])

# Plot the data points.
d.plot(fmt="r.", label="Data Points")

# Turn on the sigma column (error bars look messy on plot due to logscale)
d.setas[2] = "e"

# Curve_fit on its own
d.curve_fit(vftEquation, p0=params, result=True, header="curve_fit")

# lmfit uses some guesses
p0 = params
d.lmfit(VFTEquation, result=True, header="lmfit")

# Plot these results too
d.setas = "x..yy"
d.plot(fmt=["b-", "g-"])
# Annotate the graph
d.annotate_fit(
    vftEquation,
    x=0.25,
    y=0.35,
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
    mode="eng",
)
Exemplo n.º 26
0
    SF.fowlerNordheim,
    x=0.2,
    y=0.6,
    prefix="fowlerNordheim",
    fontdict={"size": "x-small", "color": "blue"},
)

d.setas = "xye"
fit = SF.FowlerNordheim()
p0 = [2500, 5.2, 15.0]
p0 = fit.guess(I, x=V)
for p, v, mi, mx in zip(
    ["A", "phi", "d"], [2500, 3.2, 15.0], [100, 1, 5], [1e4, 20.0, 30.0]
):
    p0[p].value = v
    p0[p].bounds = [mi, mx]
d.lmfit(SF.FowlerNordheim, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
    fit,
    x=0.2,
    y=0.2,
    prefix="FowlerNordheim",
    fontdict={"size": "x-small", "color": "green"},
)

d.ylabel = "Current"
d.title = "Fowler-Nordheim Model test"
d.tight_layout()
Exemplo n.º 27
0
B = linspace(2, 100, 26)
params = [12.5, 0.75, 1e3]
G = SF.fluchsSondheimer(B, *params) + normal(size=len(B), scale=5e-5)
dG = ones_like(B) * 5e-5
d = Data(
    B,
    G,
    dG,
    setas="xye",
    column_headers=["Thickness (nm)", "Conductance", "dConductance"],
)

d.curve_fit(SF.fluchsSondheimer, p0=params, result=True, header="curve_fit")

d.setas = "xye"
d.lmfit(SF.FluchsSondheimer, p0=params, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(SF.fluchsSondheimer,
               x=0.2,
               y=0.6,
               fontdict={
                   "size": "x-small",
                   "color": "blue"
               })
d.annotate_fit(
    SF.FluchsSondheimer,
    x=0.2,
    y=0.4,
Exemplo n.º 28
0
d.plot(fmt=["r.", "b-"])
d.annotate_fit(
    SF.simmons,
    x=0.25,
    y=0.25,
    prefix="simmons",
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
)

d.setas = "xye"
fit = SF.Simmons()
p0 = [2500, 5.2, 15.0]
d.lmfit(SF.Simmons, p0=p0, result=True, header="lmfit")
d.setas = "x...y"
d.plot(fmt="g-")
d.annotate_fit(
    fit,
    x=0.65,
    y=0.25,
    prefix="Simmons",
    fontdict={
        "size": "x-small",
        "color": "green"
    },
)

d.ylabel = "Current"
d.title = "Simmons Model test"
Exemplo n.º 29
0
"""Example of using lmfit to do a bounded fit."""
from Stoner import Data
from Stoner.Fit import StretchedExp

# Load dat and plot
d = Data("lmfit_data.txt", setas="xy")

# Do the fit
d.lmfit(StretchedExp, result=True, header="Fit", prefix="")
# plot
d.setas = "xyy"

d.plot(fmt=["+", "-"])
# Make apretty label using Stoner.Util methods
text = r"$y=A e^{-\left(\frac{x}{x_0}\right)^\beta}$" + "\n"
text += d.annotate_fit(StretchedExp, text_only=True, prefix="")
d.text(6, 4e4, text)
Exemplo n.º 30
0
@simple_model.guesser
def guess_vals(y, x=None):
    """Should guess parameter values really!"""
    m = (y.max() - y.min()) / (x[y.argmax()] - x[y.argmin()])
    c = x.mean() * m - y.mean()  # return one value per parameter
    return [m, c]


# Add a function to sry vonstraints on parameters (optional)
@simple_model.hinter
def hint_parameters():
    """Five some hints about the parameter."""
    return {"m": {"max": 10.0, "min": 0.0}, "c": {"max": 5.0, "min": -5.0}}


# Create some x,y data
x = linspace(0, 10, 101)
y = 4.5 * x - 2.3 + normal(scale=0.4, size=len(x))

# Make The Data object
d = Data(x, y, setas="xy", column_headers=["X", "Y"])

# Do the fit
d.lmfit(simple_model, result=True)

# Plot the result
d.setas = "xyy"
d.plot(fmt=["r+", "b-"])
d.title = "Simple Model Fit"
d.annotate_fit(simple_model, x=0.05, y=0.5)
Exemplo n.º 31
0
import Stoner.Fit as SF
from  numpy import linspace,ones_like
from numpy.random import normal

#Make some data
V=linspace(-4,4,1000)
I=SF.fowlerNordheim(V,2500,3.2,15.0)+normal(size=len(V),scale=10E-6)
dI=ones_like(V)*10E-6

d=Data(V,I,dI,setas="xye",column_headers=["Bias","Current","Noise"])

d.curve_fit(SF.fowlerNordheim,p0=[2500,3.2,15.0],result=True,header="curve_fit")
d.setas="xyey"
d.plot(fmt=["r.","b-"])
d.annotate_fit(SF.fowlerNordheim,x=0,y=10,prefix="fowlerNordheim",fontdict={"size":"x-small"})

d.setas="xye"
fit=SF.FowlerNordheim()
p0=[2500,5.2,15.0]
p0=fit.guess(I,x=V)
for p,v,mi,mx in zip(["A","phi","d"],[2500,3.2,15.0],[100,1,5],[1E4,20.0,30.0]):
    p0[p].value=v
    p0[p].bounds=[mi,mx]
d.lmfit(SF.FowlerNordheim,p0=p0,result=True,header="lmfit")
d.setas="x...y"
d.plot()
d.annotate_fit(fit,x=-3,y=-60,prefix="FowlerNordheim",fontdict={"size":"x-small"})

d.ylabel="Current"
d.title="Fowler-Nordheim Model test"
d.tight_layout()
Exemplo n.º 32
0
d.plot(fmt="b-", label="curve-fit")
d.annotate_fit(
    SF.quadratic,
    prefix="quadratic",
    x=0.2,
    y=0.65,
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
)

d.setas = "xy"
fit = SF.Quadratic()
p0 = fit.guess(y, x=x)
d.lmfit(SF.Quadratic, p0=p0, result=True, header="lmfit")

d.setas = "x...y"
d.plot(fmt="g-", label="lmfit")
d.annotate_fit(
    SF.Quadratic,
    prefix="Quadratic",
    x=0.65,
    y=0.65,
    fontdict={
        "size": "x-small",
        "color": "green"
    },
)

d.title = "Qudratic Fitting"
Exemplo n.º 33
0
from numpy import linspace, ones_like
from numpy.random import normal
from copy import copy

x = linspace(-1.0, 1.0, 101)
params = [1, 0.1, -0.25]
y = lorentzian_diff(x, *params) + normal(size=len(x), scale=0.5)
dy = ones_like(x) * 5e-3
d = Data(x, y, dy, setas="xye", column_headers=["Time", "Signal", "dM"])

d.curve_fit(lorentzian_diff, p0=copy(params), result=True, header="curve_fit")

d.setas = "xye"

d.lmfit(Lorentzian_diff, result=True, header="lmfit", prefix="lmfit")


d.setas = "xyeyy"
d.plot(fmt=["r+", "b-", "g-"])

d.annotate_fit(
    lorentzian_diff,
    x=0.6,
    y=0.2,
    fontdict={"size": "x-small", "color": "blue"},
    mode="eng",
)
d.annotate_fit(
    Lorentzian_diff,
    x=0.05,
Exemplo n.º 34
0
params = [265, 65, 1.0, 5]
params2 = deepcopy(params)
G = blochGrueneisen(T, *params) + normal(size=len(T), scale=5e-5)
dG = ones_like(T) * 5e-5
d = Data(
    T,
    G,
    dG,
    setas="xye",
    column_headers=["Temperature (K)", "Resistivity", "dR"],
)

d.curve_fit(blochGrueneisen, p0=params, result=True, header="curve_fit")

d.setas = "xy"
d.lmfit(BlochGrueneisen, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(blochGrueneisen, x=0.65, y=0.35, fontdict={"size": "x-small"})
d.annotate_fit(
    BlochGrueneisen,
    x=0.65,
    y=0.05,
    fontdict={"size": "x-small"},
    prefix="BlochGrueneisen",
)
d.title = "Bloch-Grueneisen Fit"
d.tight_layout()
Exemplo n.º 35
0
         column_headers=["Field $\\mu_0H (T)$", "Moment", "dM"])

func = lambda H, M_s, m: SF.langevin(H, M_s, m, 250)

d.curve_fit(func, p0=copy(params)[0:2], result=True, header="curve_fit")

d.setas = "xye"
fit = SF.Langevin()
p0 = fit.guess(G, x=B)
for p, v in zip(p0, params):
    p0[p].set(v)
    p0[p].max = v * 5
    p0[p].min = 0
    p0[p].vary = p != "T"

d.lmfit(fit, p0=p0, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(func,
               x=0.1,
               y=0.5,
               fontdict={
                   "size": "x-small",
                   "color": "blue"
               },
               mode="eng")
d.annotate_fit(
    SF.Langevin,
    x=0.1,
Exemplo n.º 36
0
B = logspace(log10(2), 2, 26)
params = [12.5, 0.75, 1e3]
G = fluchsSondheimer(B, *params) + normal(size=len(B), scale=5e-5)
dG = ones_like(B) * 5e-5
d = Data(
    B,
    G,
    dG,
    setas="xye",
    column_headers=["Thickness (nm)", "Conductance", "dConductance"],
)

d.curve_fit(fluchsSondheimer, p0=params, result=True, header="curve_fit")

d.setas = "xye"
d.lmfit(FluchsSondheimer, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(
    fluchsSondheimer,
    x=0.2,
    y=0.6,
    fontdict={
        "size": "x-small",
        "color": "blue"
    },
)
d.annotate_fit(
    FluchsSondheimer,
Exemplo n.º 37
0
"""Example of nDimArrhenius Fit."""
from Stoner import Data
import Stoner.Fit as SF
from numpy import linspace
from numpy.random import normal

# Make some data
T = linspace(200, 350, 101)
R = SF.modArrhenius(T, 1e6, 0.5, 1.5) * normal(scale=0.00005, loc=1.0, size=len(T))
d = Data(T, R, setas="xy", column_headers=["T", "Rate"])

# Curve_fit on its own
d.curve_fit(SF.modArrhenius, p0=[1e6, 0.5, 1.5], result=True, header="curve_fit")
d.setas = "xyy"
d.plot(fmt=["r.", "b-"])
d.annotate_fit(SF.modArrhenius, x=0.2, y=0.5)

# lmfit using lmfit guesses
fit = SF.ModArrhenius()
p0 = [1e6, 0.5, 1.5]
d.lmfit(fit, p0=p0, result=True, header="lmfit")
d.setas = "x..y"
d.plot()
d.annotate_fit(SF.ModArrhenius, x=0.2, y=0.25, prefix="ModArrhenius")

d.title = "Modified Arrhenius Test Fit"
d.ylabel = "Rate"
d.xlabel = "Temperature (K)"
Exemplo n.º 38
0
B = linspace(-8, 8, 201)
params = [1e-3, 2.0, 0.25, 1.4]
G = wlfit(B, *params) + normal(size=len(B), scale=5e-7)
dG = ones_like(B) * 5e-7
d = Data(
    B,
    G,
    dG,
    setas="xye",
    column_headers=["Field $\\mu_0H (T)$", "Conductance", "dConductance"],
)

d.curve_fit(wlfit, p0=copy(params), result=True, header="curve_fit")

d.setas = "xye"
d.lmfit(WLfit, result=True, header="lmfit")

d.setas = "xyeyy"
d.plot(fmt=["r.", "b-", "g-"])

d.annotate_fit(wlfit,
               x=0.05,
               y=0.75,
               fontdict={
                   "size": "x-small",
                   "color": "blue"
               })
d.annotate_fit(
    WLfit,
    x=0.05,
    y=0.5,