image_fullpath_to_predict = args["image_fullpath"] image_label_real = args["image_label_real"] input_data = [] input_labels = [] predict_flag = False if image_fullpath_to_predict: input_data = [image_fullpath_to_predict] predict_flag = True if image_label_real: input_labels = [image_label_real] train_set = [image_fullpath_to_predict] setting_object = SettingsObject.Settings( Dictionary.string_settings_german_signal_path) option_problem = Dictionary.string_option_signals_images_problem options = [option_problem, cv2.IMREAD_GRAYSCALE, 60, 60] number_of_classes = 59 # Start in 0 models = models.TFModels(setting_object=setting_object, option_problem=options, input_data=input_data, test=None, input_labels=input_labels, test_labels=None, number_of_classes=number_of_classes, type=None, validation=None, validation_labels=None, load_model_configuration=False, predict_flag=predict_flag) models.convolution_model_image()
validation_set_web_traffic = tf_reader_web_traffic.validation_set # Test Set train_set_web_traffic = tf_reader_web_traffic.train_set # Train Set del tf_reader_web_traffic names_of_data = [ "input_data", "validation_data", "inputs_labels", "validation_labels" ] names_of_data_updated = [ "input_data_updated", "validation_data_updated", "inputs_labels", "validation_labels" ] names_dictionaries = ["input_validation_dictionary"] # Load input, validation and labels from updated arrays where inputs are [number, float] where number is # the page id and float is the visits' number input_data, validation, input_labels, validation_labels = \ load_numpy_arrays_generic(path_to_load=setting_object_web_traffic.accuracies_losses_path, names=names_of_data_updated) models_zillow_price = models.TFModels( input_data=input_data, input_labels=input_labels, validation=validation, validation_labels=validation_labels, number_of_classes=number_of_classes_web_traffic, setting_object=setting_object_web_traffic, option_problem=option_problem_web_traffic, load_model_configuration=False) #with tf.device('/gpu:0'): models_zillow_price.rnn_lstm_web_traffic_time()
reader_features=reader_features) # Reader Object with all information """ # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- # ---- DATA MINING ---- # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- """ """ Manipulate Reader with DataMining and update it. """ """ Getting train, validation (if necessary) and test set. """ test_set = tf_reader.test_set # Test Set train_set = tf_reader.train_set # Train Set del reader_features del tf_reader option_problem = Dictionary.string_option_signals_images_problem models = models.TFModels(input=train_set[0], test=test_set[0], input_labels=train_set[1], test_labels=test_set[1], number_of_classes=number_of_classes, setting_object=setting_object, option_problem=option_problem, load_model_configuration=True) models.convolution_model_image()
# -------------------------------------------------------------------------- # ---- DATA MINING ---- # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- """ """ Manipulate Reader with DataMining and update it. """ """ Getting train, validation (if necessary) and test set. """ train_set = tf_reader.train_set # Train Set test_set = tf_reader.test_set # Test Set del reader_features del tf_reader models = models.TFModels(setting_object=setting_object, option_problem=options, input_data=train_set[0], test=test_set[0], input_labels=train_set[1], test_labels=test_set[1], number_of_classes=number_of_classes, type=None, validation=None, validation_labels=None, load_model_configuration=False) #with tf.device('/cpu:0'): # CPU with tf.device('/gpu:0'): # GPU models.convolution_model_image()
reader_features=reader_features, settings=setting_object) # Reader Object with all information x_train = tf_reader.x_train y_train = tf_reader.y_train x_test = tf_reader.x_test y_test = tf_reader.y_test pt("x_train", x_train.shape) pt("y_train", y_train.shape) pt("x_test", x_test.shape) pt("y_test", y_test.shape) with tf.device('/gpu:0'): # GPU models = models.TFModels(setting_object=setting_object, option_problem=options, input_data=x_train, test=x_test, input_labels=y_train, test_labels=y_test, number_of_classes=number_of_classes, type=None, validation=None, validation_labels=None) #with tf.device('/cpu:0'): # CPU models.convolution_model_image() """ if __name__ == '__main__': import multiprocessing multiprocessing.freeze_support() """