Exemplo n.º 1
0
def test(model_dir, data_dir, results_subdir, random_seed, resolution):
    np.random.seed(random_seed)
    tf.set_random_seed(np.random.randint(1 << 31))
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                                  inter_op_parallelism_threads=1)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    set_session(sess)

    # parser config
    config_file = model_dir + "/config.ini"
    print("Config File Path:", config_file, flush=True)
    assert os.path.isfile(config_file)
    cp = ConfigParser()
    cp.read(config_file)

    # default config
    image_dimension = cp["TRAIN"].getint("image_dimension")
    batch_size = cp["TEST"].getint("batch_size")
    use_best_weights = cp["TEST"].getboolean("use_best_weights")

    print("** DenseNet input resolution:", image_dimension, flush=True)
    print("** GAN image resolution:", resolution, flush=True)

    log2_record = int(np.log2(resolution))
    record_file_ending = "*" + np.str(log2_record) + ".tfrecords"
    print("** Resolution ",
          resolution,
          " corresponds to ",
          record_file_ending,
          " TFRecord file.",
          flush=True)

    output_dir = os.path.join(
        results_subdir,
        "classification_results_res_" + np.str(2**log2_record) + "/test")
    print("Output Directory:", output_dir, flush=True)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)

    if use_best_weights:
        print("** Using BEST weights", flush=True)
        model_weights_path = os.path.join(
            results_subdir, "classification_results_res_" +
            np.str(2**log2_record) + "/train/best_weights.h5")
    else:
        print("** Using LAST weights", flush=True)
        model_weights_path = os.path.join(
            results_subdir, "classification_results_res_" +
            np.str(2**log2_record) + "/train/weights.h5")

    # get test sample count
    shutil.copy(results_subdir[:-4] + "/test/test.csv", output_dir)
    tfrecord_dir_te = os.path.join(data_dir, "test")
    class_names = get_class_names(output_dir, "test")

    test_counts, _ = get_sample_counts(output_dir, "test", class_names)

    # get indicies (all of csv file for validation)
    print("** test counts:", test_counts, flush=True)

    # compute steps
    test_steps = int(np.floor(test_counts / batch_size))
    print("** test_steps:", test_steps, flush=True)

    # Get Model
    # ------------------------------------
    input_shape = (image_dimension, image_dimension, 3)
    img_input = Input(shape=input_shape)

    base_model = DenseNet121(include_top=False,
                             weights=None,
                             input_tensor=img_input,
                             input_shape=input_shape,
                             pooling="avg")

    x = base_model.output
    predictions = Dense(len(class_names),
                        activation="sigmoid",
                        name="predictions")(x)
    model = Model(inputs=img_input, outputs=predictions)

    print(" ** load model from:", model_weights_path, flush=True)
    model.load_weights(model_weights_path)
    # ------------------------------------

    print("** load test generator **", flush=True)
    test_seq = TFWrapper(tfrecord_dir=tfrecord_dir_te,
                         record_file_endings=record_file_ending,
                         batch_size=batch_size,
                         model_target_size=(image_dimension, image_dimension),
                         steps=None,
                         augment=False,
                         shuffle=False,
                         prefetch=True,
                         repeat=False)

    print("** make prediction **", flush=True)
    test_seq.initialise()  #MAKE SURE REINIT
    y_hat = model.predict_generator(test_seq, workers=0)
    test_seq.initialise()  #MAKE SURE REINIT
    y = test_seq.get_y_true()
    test_log_path = os.path.join(output_dir, "test.log")
    print("** write log to", test_log_path, flush=True)
    aurocs = []
    tpr_fpr_thr = []
    with open(test_log_path, "w") as f:
        for i in range(len(class_names)):
            tpr, fpr, thr = roc_curve(y[:, i], y_hat[:, i])
            roc_rates = np.concatenate(
                (fpr.reshape(-1, 1), tpr.reshape(-1, 1), thr.reshape(-1, 1)),
                axis=1)
            tpr_fpr_thr.append(roc_rates)
            try:
                score = roc_auc_score(y[:, i], y_hat[:, i])
                if score < 0.5:
                    score = 1. - score
                aurocs.append(score)
            except ValueError:
                score = 0
            f.write(np.str(class_names[i]) + " : " + np.str(score) + "\n")
        mean_auroc = np.mean(aurocs)
        f.write("-------------------------\n")
        f.write("mean auroc: " + np.str(mean_auroc) + "\n")
        print("mean auroc:", mean_auroc, flush=True)

    roc_char = np.asarray(tpr_fpr_thr)
    np.save(output_dir + "/roc_char.npy", roc_char)
    print("Saved ROC data (TPR, FPR, THR) to:",
          output_dir + "/roc_char.npy",
          flush=True)
Exemplo n.º 2
0
def nn(model_dir, data_dir, results_subdir, random_seed, resolution):
    np.random.seed(random_seed)
    tf.set_random_seed(np.random.randint(1 << 31))
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                                  inter_op_parallelism_threads=1)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    set_session(sess)

    # parser config
    config_file = model_dir + "/config.ini"
    print("Config File Path:", config_file, flush=True)
    assert os.path.isfile(config_file)
    cp = ConfigParser()
    cp.read(config_file)

    output_dir = os.path.join(results_subdir, "classification_results/nn")
    train_outdir = os.path.join(results_subdir, "classification_results/train")
    print("Output Directory:", output_dir, flush=True)

    # default config
    image_dimension = cp["TRAIN"].getint("image_dimension")
    gan_resolution = resolution
    batch_size = cp["TEST"].getint("batch_size")
    use_best_weights = cp["TEST"].getboolean("use_best_weights")

    if use_best_weights:
        print("** Using BEST weights", flush=True)
        model_weights_path = os.path.join(
            results_subdir, "classification_results/nn/best_weights.h5")
    else:
        print("** Using LAST weights", flush=True)
        model_weights_path = os.path.join(
            results_subdir, "classification_results/nn/weights.h5")

    print("** DenseNet Input Resolution:", image_dimension, flush=True)
    print("** GAN Image Resolution:", gan_resolution, flush=True)

    tfrecord_dir_tr = os.path.join(data_dir, "train")
    tfrecord_dir_te = os.path.join(results_subdir, "inference/test")
    # Get class names
    class_names = get_class_names(train_outdir, "train")
    counts, _ = get_sample_counts(train_outdir, "train", class_names)

    # get indicies (all of csv file for validation)
    print("** counts:", counts, flush=True)
    # compute steps
    train_steps = int(np.floor(counts / batch_size))
    print("** t_steps:", train_steps, flush=True)

    log2_record = int(np.log2(gan_resolution))
    record_file_ending = "*" + np.str(log2_record) + ".tfrecords"
    print("** resolution ",
          gan_resolution,
          " corresponds to ",
          record_file_ending,
          " TFRecord file.",
          flush=True)

    # Get Model
    # ------------------------------------
    input_shape = (image_dimension, image_dimension, 3)
    img_input = Input(shape=input_shape)

    base_model = DenseNet121(include_top=False,
                             weights=None,
                             input_tensor=img_input,
                             input_shape=input_shape,
                             pooling="avg")

    x = base_model.output
    predictions = Dense(len(class_names),
                        activation="sigmoid",
                        name="predictions")(x)
    model = Model(inputs=img_input, outputs=predictions)

    print(" ** load model from:", model_weights_path, flush=True)
    model.load_weights(model_weights_path)
    # ------------------------------------
    # Extract representation layer output:
    layer_name = 'avg_pool'
    intermediate_layer_model = Model(
        inputs=model.input, outputs=model.get_layer(layer_name).output)

    #intermediate_output = intermediate_layer_model(data)

    def renorm_and_save_npy(x, name):
        imagenet_mean = np.array([0.485, 0.456, 0.406])
        imagenet_std = np.array([0.229, 0.224, 0.225])
        x = x * imagenet_std + imagenet_mean
        save_path = output_dir + "/" + name + ".npy"
        np.save(save_path, x)
        print("** save npy images under: ", save_path, flush=True)

    def save_array(x, name):
        save_path = output_dir + "/" + name + ".npy"
        np.save(save_path, x)
        print("** save npy images under: ", save_path, flush=True)

    # Load test Inference images
    test_bs = 200
    print("** load inference images, save random n=", test_bs, flush=True)
    test_seq = TFWrapper(tfrecord_dir=tfrecord_dir_te,
                         record_file_endings=record_file_ending,
                         batch_size=test_bs,
                         model_target_size=(image_dimension, image_dimension),
                         steps=None,
                         augment=False,
                         shuffle=False,
                         prefetch=True,
                         repeat=False)
    test_seq.initialise()
    x, x_orig, x_label = test_seq.__getitem__(0)
    renorm_and_save_npy(x, name="real_inf_224")
    renorm_and_save_npy(x_orig, name="real_inf_256")
    save_array(x_label, name="real_inf_label")

    print("** Compute inf latent rep **", flush=True)
    x_latrep = intermediate_layer_model.predict(x)
    print("** Latent Size: ", x_latrep.shape, flush=True)

    # Load train Inference images
    print("** load train generator **", flush=True)
    train_seq = TFWrapper(tfrecord_dir=tfrecord_dir_tr,
                          record_file_endings=record_file_ending,
                          batch_size=batch_size,
                          model_target_size=(image_dimension, image_dimension),
                          steps=train_steps,
                          augment=False,
                          shuffle=False,
                          prefetch=True,
                          repeat=False)
    train_seq.initialise()
    print("** generator loaded **", flush=True)
    # Loop through training data and compute minimums
    H, H_orig = image_dimension, 256
    W, W_orig = image_dimension, 256
    D = 3
    BS = batch_size
    n = test_bs
    LS = x_latrep.shape[1]
    cur_nn_imgs = np.zeros((n, H, W, D))  #Current nn images
    cur_nn_imgs_orig = np.zeros((n, H_orig, W_orig, D))
    cur_nn_labels = np.zeros((n, x_label.shape[1]))
    cur_cos_min = np.ones((n, 1)) * 10000  #Current minimum cosine distance

    time_old = time.time()
    print("** Start nn determination **", flush=True)
    for i in range(0, train_steps):
        # Get batch images and lat. reps
        y, y_orig, y_label = train_seq.__getitem__(i)  #[BS,H,W,D]
        y_latrep = intermediate_layer_model.predict(y)  #[BS,LS]

        #y_reshaped = y.reshape([BS,1,H,W,D])   #Reshape for tiling [BS,1,H,W,D]
        #y_orig_reshaped = y_orig.reshape([BS,1,H_orig,W_orig,D])
        #y_label_reshaped = y_label.reshape([BS,1,x_label.shape[1]])

        y_tiled = np.tile(y, [1, n, 1, 1, 1])  #Tile: [BS,n,H,W,D]
        y_orig_tiled = np.tile(y_orig, [1, n, 1, 1, 1])
        y_label_tiled = np.tile(y_label, [1, n, 1])

        cosdis = np.ones(
            (n, BS)) - cosine_similarity(x_latrep, y_latrep)  #[n,BS]
        argmin_cosdis = np.argmin(cosdis, axis=1)  #[n,1]
        min_cosdis = np.min(cosdis, axis=1).reshape(n, 1)  #[n,1]

        min_y = y_tiled[:, argmin_cosdis].reshape(
            n, H, W, D)  #[n,H,W,D]: Min. Cosdis for each inf_img from batch
        min_y_orig = y_orig_tiled[:,
                                  argmin_cosdis].reshape(n, H_orig, W_orig, D)
        min_ylabel = y_label_tiled[:, argmin_cosdis].reshape(
            (n, x_label.shape[1]))

        t = np.where(
            min_cosdis < cur_cos_min
        )  #Indicies where min. cosdistance is smaller then current

        cur_cos_min[t[0]] = min_cosdis[t[0]]  #Update current cosdis minima
        cur_nn_imgs[t[0]] = min_y[t[0]]  #Update current nn images
        cur_nn_imgs_orig[t[0]] = min_y_orig[t[0]]
        cur_nn_labels[t[0]] = min_ylabel[t[0]]

        if i % 100 == 0 and i > 0:
            time_new = time.time()
            print("Iteration ", i, "/", train_steps,
                  "took %.2f seconds" % (time_new - time_old))
            time_old = time_new
            print("Current mean cos-distance:", np.mean(cur_cos_min))

    print("** Loop Done **", flush=True)
    renorm_and_save_npy(cur_nn_imgs, name="nn_images_224")
    renorm_and_save_npy(cur_nn_imgs_orig, name="nn_images_256")
    save_array(cur_cos_min, name="cosdistance_minimum")
    save_array(cur_nn_labels, name="nn_labels")
Exemplo n.º 3
0
def train(model_dir, results_subdir, random_seed, resolution):
    np.random.seed(random_seed)
    tf.set_random_seed(np.random.randint(1 << 31))
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                                  inter_op_parallelism_threads=1)
    session_conf.gpu_options.allow_growth = True
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    set_session(sess)

    # parser config
    config_file = model_dir + "/config.ini"
    print("Config File Path:", config_file, flush=True)
    assert os.path.isfile(config_file)
    cp = ConfigParser()
    cp.read(config_file)

    # default config
    base_model_name = cp["DEFAULT"].get("base_model_name")

    # train config
    path_model_base_weights = cp["TRAIN"].get("path_model_base_weights")
    use_trained_model_weights = cp["TRAIN"].getboolean(
        "use_trained_model_weights")
    use_best_weights = cp["TRAIN"].getboolean("use_best_weights")
    output_weights_name = cp["TRAIN"].get("output_weights_name")
    epochs = cp["TRAIN"].getint("epochs")
    batch_size = cp["TRAIN"].getint("batch_size")
    initial_learning_rate = cp["TRAIN"].getfloat("initial_learning_rate")
    image_dimension = cp["TRAIN"].getint("image_dimension")
    patience_reduce_lr = cp["TRAIN"].getint("patience_reduce_lr")
    min_lr = cp["TRAIN"].getfloat("min_lr")
    positive_weights_multiply = cp["TRAIN"].getfloat(
        "positive_weights_multiply")
    patience = cp["TRAIN"].getint("patience")
    samples_per_epoch = cp["TRAIN"].getint("samples_per_epoch")
    reduce_lr = cp["TRAIN"].getfloat("reduce_lr")

    print("** DenseNet input resolution:", image_dimension, flush=True)
    print("** GAN image resolution:", resolution, flush=True)
    print("** Patience epochs", patience, flush=True)
    print("** Samples per epoch:", samples_per_epoch, flush=True)

    log2_record = int(np.log2(resolution))
    record_file_ending = "*" + np.str(log2_record) + ".tfrecords"
    print("** Resolution ",
          resolution,
          " corresponds to ",
          record_file_ending,
          " TFRecord file.",
          flush=True)

    output_dir = os.path.join(
        results_subdir,
        "classification_results_res_" + np.str(2**log2_record) + "/train")
    print("Output Directory:", output_dir, flush=True)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)

    # if previously trained weights is used, never re-split
    if use_trained_model_weights:
        print("** use trained model weights **", flush=True)
        training_stats_file = os.path.join(output_dir, ".training_stats.json")
        if os.path.isfile(training_stats_file):
            # TODO: add loading previous learning rate?
            training_stats = json.load(open(training_stats_file))
        else:
            training_stats = {}
    else:
        # start over
        training_stats = {}

    show_model_summary = cp["TRAIN"].getboolean("show_model_summary")
    running_flag_file = os.path.join(output_dir, ".training.lock")
    if os.path.isfile(running_flag_file):
        raise RuntimeError("A process is running in this directory!!!")
    else:
        open(running_flag_file, "a").close()

    try:
        print("backup config file to", output_dir, flush=True)
        shutil.copy(config_file,
                    os.path.join(output_dir,
                                 os.path.split(config_file)[1]))

        tfrecord_dir_tr = os.path.join(results_subdir[:-4], "train")
        tfrecord_dir_vl = os.path.join(results_subdir[:-4], "valid")

        shutil.copy(tfrecord_dir_tr + "/train.csv", output_dir)
        shutil.copy(tfrecord_dir_vl + "/valid.csv", output_dir)

        # Get class names
        class_names = get_class_names(output_dir, "train")

        # get train sample counts
        train_counts, train_pos_counts = get_sample_counts(
            output_dir, "train", class_names)
        valid_counts, _ = get_sample_counts(output_dir, "valid", class_names)

        print("Total Training Data:", train_counts, flush=True)
        print("Total Validation Data:", valid_counts, flush=True)
        train_steps = int(min(samples_per_epoch, train_counts) / batch_size)
        print("** train_steps:", train_steps, flush=True)
        validation_steps = int(np.floor(valid_counts / batch_size))
        print("** validation_steps:", validation_steps, flush=True)

        # compute class weights
        print("** compute class weights from training data **", flush=True)
        class_weights = get_class_weights(
            train_counts,
            train_pos_counts,
            multiply=positive_weights_multiply,
        )
        print("** class_weights **", flush=True)
        print(class_weights)

        print("** load model **", flush=True)
        if use_trained_model_weights:
            if use_best_weights:
                model_weights_file = os.path.join(
                    output_dir, "best_" + output_weights_name)
            else:
                model_weights_file = os.path.join(output_dir,
                                                  output_weights_name)
        else:
            model_weights_file = None

        # Use downloaded weights
        if os.path.isfile(path_model_base_weights):
            base_weights = path_model_base_weights
            print("** Base weights will be loaded.", flush=True)
        else:
            base_weights = None
            print("** No Base weights.", flush=True)

        # Get Model
        # ------------------------------------
        input_shape = (image_dimension, image_dimension, 3)
        img_input = Input(shape=input_shape)

        base_model = DenseNet121(include_top=False,
                                 weights=base_weights,
                                 input_tensor=img_input,
                                 input_shape=input_shape,
                                 pooling="avg")

        x = base_model.output
        predictions = Dense(len(class_names),
                            activation="sigmoid",
                            name="predictions")(x)
        model = Model(inputs=img_input, outputs=predictions)

        if use_trained_model_weights and model_weights_file != None:
            print("** load model weights_path:",
                  model_weights_file,
                  flush=True)
            model.load_weights(model_weights_file)
        # ------------------------------------

        if show_model_summary:
            print(model.summary())

        print("** create image generators", flush=True)
        train_seq = TFWrapper(tfrecord_dir=tfrecord_dir_tr,
                              record_file_endings=record_file_ending,
                              batch_size=batch_size,
                              model_target_size=(image_dimension,
                                                 image_dimension),
                              steps=train_steps,
                              augment=True,
                              shuffle=True,
                              prefetch=True,
                              repeat=True)

        valid_seq = TFWrapper(tfrecord_dir=tfrecord_dir_vl,
                              record_file_endings=record_file_ending,
                              batch_size=batch_size,
                              model_target_size=(image_dimension,
                                                 image_dimension),
                              steps=None,
                              augment=False,
                              shuffle=False,
                              prefetch=True,
                              repeat=True)

        # Initialise train and valid iterats
        print("** Initialise train and valid iterators", flush=True)
        train_seq.initialise()
        valid_seq.initialise()

        output_weights_path = os.path.join(output_dir, output_weights_name)
        print("** set output weights path to:",
              output_weights_path,
              flush=True)

        print("** SINGLE_gpu_model is used!", flush=True)
        model_train = model
        checkpoint = ModelCheckpoint(
            output_weights_path,
            save_weights_only=True,
            save_best_only=False,
            verbose=1,
        )

        print("** compile model with class weights **", flush=True)
        optimizer = Adam(lr=initial_learning_rate)
        model_train.compile(optimizer=optimizer, loss="binary_crossentropy")

        auroc = MultipleClassAUROC(sequence=valid_seq,
                                   class_names=class_names,
                                   weights_path=output_weights_path,
                                   stats=training_stats,
                                   early_stop_p=patience,
                                   learn_rate_p=patience_reduce_lr,
                                   learn_rate_f=reduce_lr,
                                   min_lr=min_lr,
                                   workers=0)

        callbacks = [
            checkpoint,
            TensorBoard(log_dir=os.path.join(output_dir, "logs"),
                        batch_size=batch_size), auroc
        ]

        print("** start training **", flush=True)
        history = model_train.fit_generator(
            generator=train_seq,
            steps_per_epoch=train_steps,
            epochs=epochs,
            validation_data=valid_seq,
            validation_steps=validation_steps,
            callbacks=callbacks,
            class_weight=class_weights,
            workers=0,
            shuffle=False,
        )

        # dump history
        print("** dump history **", flush=True)
        with open(os.path.join(output_dir, "history.pkl"), "wb") as f:
            pickle.dump({
                "history": history.history,
                "auroc": auroc.aurocs,
            }, f)
        print("** done! **", flush=True)

    finally:
        os.remove(running_flag_file)
Exemplo n.º 4
0
def cxpl(model_dir, data_dir, results_subdir, random_seed, resolution):
    np.random.seed(random_seed)
    tf.set_random_seed(np.random.randint(1 << 31))
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    set_session(sess)

    # parser config
    config_file = model_dir+ "/config.ini"
    print("Config File Path:", config_file,flush=True)
    assert os.path.isfile(config_file)
    cp = ConfigParser()
    cp.read(config_file)

    output_dir = os.path.join(results_subdir, "classification_results/test")
    print("Output Directory:", output_dir,flush=True)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)


    # default config
    image_dimension = cp["TRAIN"].getint("image_dimension")
    gan_resolution = resolution
    batch_size = cp["TEST"].getint("batch_size")
    use_best_weights = cp["TEST"].getboolean("use_best_weights")

    if use_best_weights:
        print("** Using BEST weights",flush=True)
        model_weights_path = os.path.join(results_subdir, "classification_results/train/best_weights.h5")
    else:
        print("** Using LAST weights",flush=True)
        model_weights_path = os.path.join(results_subdir, "classification_results/train/weights.h5")

    print("** DenseNet Input Resolution:", image_dimension, flush=True)
    print("** GAN Image Resolution:", gan_resolution, flush=True)

    # get test sample count
    test_dir = os.path.join(results_subdir, "inference/test")
    shutil.copy(test_dir+"/test.csv", output_dir)

    # Get class names 
    class_names = get_class_names(output_dir,"test")

    tfrecord_dir_te = os.path.join(data_dir, "test")
    test_counts, _ = get_sample_counts(output_dir, "test", class_names)
    
    # get indicies (all of csv file for validation)
    print("** test counts:", test_counts, flush=True)

    # compute steps
    test_steps = int(np.floor(test_counts / batch_size))
    print("** test_steps:", test_steps, flush=True)

    log2_record = int(np.log2(gan_resolution))
    record_file_ending = "*"+ np.str(log2_record)+ ".tfrecords"
    print("** resolution ", gan_resolution, " corresponds to ", record_file_ending, " TFRecord file.", flush=True)

    # Get Model
    # ------------------------------------
    input_shape=(image_dimension, image_dimension, 3)
    img_input = Input(shape=input_shape)

    base_model = DenseNet121(
        include_top = False, 
        weights = None,
        input_tensor = img_input,
        input_shape = input_shape,
        pooling = "avg")

    x = base_model.output
    predictions = Dense(len(class_names), activation="sigmoid", name="predictions")(x)
    model = Model(inputs=img_input, outputs = predictions)

    print(" ** load model from:", model_weights_path, flush=True)
    model.load_weights(model_weights_path)
    # ------------------------------------

    print("** load test generator **", flush=True)
    test_seq = TFWrapper(
            tfrecord_dir=tfrecord_dir_te,
            record_file_endings = record_file_ending,
            batch_size = batch_size,
            model_target_size = (image_dimension, image_dimension),
            steps = None,
            augment=False,
            shuffle=False,
            prefetch=True,
            repeat=False)

    print("** make prediction **", flush=True)
    test_seq.initialise() 
    x_all, y_all = test_seq.get_all_test_data()
    print("X-Test  Shape:", x_all.shape,flush=True)
    print("Y-Test  Shape:", y_all.shape,flush=True)

    print("----------------------------------------", flush=True)
    print("Test Model AUROC", flush=True)
    y_pred = model.predict(x_all)
    current_auroc = []
    for i in range(len(class_names)):
        try:
            score = roc_auc_score(y_all[:, i], y_pred[:, i])
        except ValueError:
            score = 0
        current_auroc.append(score)
        print(i+1,class_names[i],": ", score, flush=True)
    mean_auroc = np.mean(current_auroc)
    print("Mean auroc: ", mean_auroc,flush=True)

    print("----------------------------------------", flush=True)
    downscale_factor  = 8
    num_models_to_use = 3
    num_test_images   = 100
    print("Number of Models to use:", num_models_to_use, flush=True)
    print("Number of Test images:", num_test_images, flush=True)
    x_tr, y_tr = x_all[num_test_images:], y_all[num_test_images:]
    x_te, y_te = x_all[0:num_test_images], y_all[0:num_test_images]

    downsample_factors = (downscale_factor,downscale_factor)
    print("Downsample Factors:", downsample_factors,flush=True)
    model_builder = UNetModelBuilder(downsample_factors, num_layers=2, num_units=8, activation="relu",
                                     p_dropout=0.0, verbose=0, batch_size=32, learning_rate=0.001)
    print("Model build done.",flush=True)
    masking_operation = ZeroMasking()
    loss = categorical_crossentropy

    explainer = CXPlain(model, model_builder, masking_operation, loss, 
                    num_models=num_models_to_use, downsample_factors=downsample_factors, flatten_for_explained_model=False)
    print("Explainer build done.",flush=True)

    explainer.fit(x_tr, y_tr);
    print("Explainer fit done.",flush=True)

    try:
        attr, conf = explainer.explain(x_te, confidence_level=0.80)
        np.save(output_dir+"/x_cxpl.npy", x_te)
        np.save(output_dir+"/y_cxpl.npy", y_te)
        np.save(output_dir+"/attr.npy", attr)
        np.save(output_dir+"/conf.npy", conf)
        print("Explainer explain done and saved.",flush=True)
    except Exception as ef: print(ef,flush=True)