Exemplo n.º 1
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train
    global meta_data_eval

    ap = AudioProcessor(**c.audio)
    model = SpeakerEncoder(
        input_dim=c.model["input_dim"],
        proj_dim=c.model["proj_dim"],
        lstm_dim=c.model["lstm_dim"],
        num_lstm_layers=c.model["num_lstm_layers"],
    )
    optimizer = RAdam(model.parameters(), lr=c.lr)

    if c.loss == "ge2e":
        criterion = GE2ELoss(loss_method="softmax")
    elif c.loss == "angleproto":
        criterion = AngleProtoLoss()
    else:
        raise Exception("The %s  not is a loss supported" % c.loss)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint["model"])
        except KeyError:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group["lr"] = c.lr
        print(" > Model restored from step %d" % checkpoint["step"], flush=True)
        args.restore_step = checkpoint["step"]
    else:
        args.restore_step = 0

    if use_cuda:
        model = model.cuda()
        criterion.cuda()

    if c.lr_decay:
        scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    # pylint: disable=redefined-outer-name
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    global_step = args.restore_step
    _, global_step = train(model, criterion, optimizer, scheduler, ap, global_step)
Exemplo n.º 2
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train
    global meta_data_eval

    ap = AudioProcessor(**c.audio)
    model = setup_model(c)

    optimizer = RAdam(model.parameters(), lr=c.lr)

    # pylint: disable=redefined-outer-name
    meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=False)

    data_loader, num_speakers = setup_loader(ap, is_val=False, verbose=True)

    if c.loss == "ge2e":
        criterion = GE2ELoss(loss_method="softmax")
    elif c.loss == "angleproto":
        criterion = AngleProtoLoss()
    elif c.loss == "softmaxproto":
        criterion = SoftmaxAngleProtoLoss(c.model["proj_dim"], num_speakers)
    else:
        raise Exception("The %s  not is a loss supported" % c.loss)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            model.load_state_dict(checkpoint["model"])

            if "criterion" in checkpoint:
                criterion.load_state_dict(checkpoint["criterion"])

        except (KeyError, RuntimeError):
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint["model"], c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group["lr"] = c.lr

        print(" > Model restored from step %d" % checkpoint["step"], flush=True)
        args.restore_step = checkpoint["step"]
    else:
        args.restore_step = 0

    if c.lr_decay:
        scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if use_cuda:
        model = model.cuda()
        criterion.cuda()

    global_step = args.restore_step
    _, global_step = train(model, optimizer, scheduler, criterion, data_loader, global_step)
Exemplo n.º 3
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])

    # set model characters
    model_characters = phonemes if c.use_phonemes else symbols
    num_chars = len(model_characters)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(
            len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(
            len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
        c, args, meta_data_train, OUT_PATH)

    # setup model
    model = setup_model(num_chars,
                        num_speakers,
                        c,
                        speaker_embedding_dim=speaker_embedding_dim)
    optimizer = RAdam(model.parameters(),
                      lr=c.lr,
                      weight_decay=0,
                      betas=(0.9, 0.98),
                      eps=1e-9)
    criterion = GlowTTSLoss()

    if args.restore_path:
        print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:  #pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr
        print(f" > Model restored from step {checkpoint['step']:d}",
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP_th(model, device_ids=[args.rank])

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if args.restore_step == 0 or not args.best_path:
        best_loss = float('inf')
        print(" > Starting with inf best loss.")
    else:
        print(" > Restoring best loss from "
              f"{os.path.basename(args.best_path)} ...")
        best_loss = torch.load(args.best_path,
                               map_location='cpu')['model_loss']
        print(f" > Starting with loaded last best loss {best_loss}.")
    keep_all_best = c.get('keep_all_best', False)
    keep_after = c.get('keep_after', 10000)  # void if keep_all_best False

    # define dataloaders
    train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
    eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)

    global_step = args.restore_step
    model = data_depended_init(train_loader, model)
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        train_avg_loss_dict, global_step = train(train_loader, model,
                                                 criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch)
        eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_loss']
        best_loss = save_best_model(target_loss,
                                    best_loss,
                                    model,
                                    optimizer,
                                    global_step,
                                    epoch,
                                    c.r,
                                    OUT_PATH,
                                    model_characters,
                                    keep_all_best=keep_all_best,
                                    keep_after=keep_after)
Exemplo n.º 4
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global train_data, eval_data
    print(f" > Loading wavs from: {c.data_path}")
    if c.feature_path is not None:
        print(f" > Loading features from: {c.feature_path}")
        eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path,
                                                   c.eval_split_size)
    else:
        eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)

    # setup audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])

    # setup models
    model_gen = setup_generator(c)
    model_disc = setup_discriminator(c)

    # setup optimizers
    optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0)
    optimizer_disc = RAdam(model_disc.parameters(),
                           lr=c.lr_disc,
                           weight_decay=0)

    # schedulers
    scheduler_gen = None
    scheduler_disc = None
    if 'lr_scheduler_gen' in c:
        scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen)
        scheduler_gen = scheduler_gen(optimizer_gen,
                                      **c.lr_scheduler_gen_params)
    if 'lr_scheduler_disc' in c:
        scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc)
        scheduler_disc = scheduler_disc(optimizer_disc,
                                        **c.lr_scheduler_disc_params)

    # setup criterion
    criterion_gen = GeneratorLoss(c)
    criterion_disc = DiscriminatorLoss(c)

    if args.restore_path:
        print(f" > Restoring from {os.path.basename(args.restore_path)}...")
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Generator Model...")
            model_gen.load_state_dict(checkpoint['model'])
            print(" > Restoring Generator Optimizer...")
            optimizer_gen.load_state_dict(checkpoint['optimizer'])
            print(" > Restoring Discriminator Model...")
            model_disc.load_state_dict(checkpoint['model_disc'])
            print(" > Restoring Discriminator Optimizer...")
            optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
            if 'scheduler' in checkpoint:
                print(" > Restoring Generator LR Scheduler...")
                scheduler_gen.load_state_dict(checkpoint['scheduler'])
                # NOTE: Not sure if necessary
                scheduler_gen.optimizer = optimizer_gen
            if 'scheduler_disc' in checkpoint:
                print(" > Restoring Discriminator LR Scheduler...")
                scheduler_disc.load_state_dict(checkpoint['scheduler_disc'])
                scheduler_disc.optimizer = optimizer_disc
        except RuntimeError:
            # restore only matching layers.
            print(" > Partial model initialization...")
            model_dict = model_gen.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model_gen.load_state_dict(model_dict)

            model_dict = model_disc.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c)
            model_disc.load_state_dict(model_dict)
            del model_dict

        # reset lr if not countinuining training.
        for group in optimizer_gen.param_groups:
            group['lr'] = c.lr_gen

        for group in optimizer_disc.param_groups:
            group['lr'] = c.lr_disc

        print(f" > Model restored from step {checkpoint['step']:d}",
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model_gen.cuda()
        criterion_gen.cuda()
        model_disc.cuda()
        criterion_disc.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model_gen = DDP_th(model_gen, device_ids=[args.rank])
        model_disc = DDP_th(model_disc, device_ids=[args.rank])

    num_params = count_parameters(model_gen)
    print(" > Generator has {} parameters".format(num_params), flush=True)
    num_params = count_parameters(model_disc)
    print(" > Discriminator has {} parameters".format(num_params), flush=True)

    if args.restore_step == 0 or not args.best_path:
        best_loss = float('inf')
        print(" > Starting with inf best loss.")
    else:
        print(" > Restoring best loss from "
              f"{os.path.basename(args.best_path)} ...")
        best_loss = torch.load(args.best_path,
                               map_location='cpu')['model_loss']
        print(f" > Starting with best loss of {best_loss}.")
    keep_all_best = c.get('keep_all_best', False)
    keep_after = c.get('keep_after', 10000)  # void if keep_all_best False

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        _, global_step = train(model_gen, criterion_gen, optimizer_gen,
                               model_disc, criterion_disc, optimizer_disc,
                               scheduler_gen, scheduler_disc, ap, global_step,
                               epoch)
        eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc,
                                      criterion_disc, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = eval_avg_loss_dict[c.target_loss]
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model_gen,
            optimizer_gen,
            scheduler_gen,
            model_disc,
            optimizer_disc,
            scheduler_disc,
            global_step,
            epoch,
            OUT_PATH,
            keep_all_best=keep_all_best,
            keep_after=keep_after,
            model_losses=eval_avg_loss_dict,
        )
Exemplo n.º 5
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, speaker_mapping, symbols, phonemes, model_characters
    # Audio processor
    ap = AudioProcessor(**c.audio)

    # setup custom characters if set in config file.
    if "characters" in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)
    model_characters = phonemes if c.use_phonemes else symbols

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if "train_portion" in c.keys():
        meta_data_train = meta_data_train[:int(
            len(meta_data_train) * c.train_portion)]
    if "eval_portion" in c.keys():
        meta_data_eval = meta_data_eval[:int(
            len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
        c, args, meta_data_train, OUT_PATH)

    model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)

    # scalers for mixed precision training
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
    scaler_st = torch.cuda.amp.GradScaler(
    ) if c.mixed_precision and c.separate_stopnet else None

    params = set_weight_decay(model, c.wd)
    optimizer = RAdam(params, lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    # setup criterion
    criterion = TacotronLoss(c,
                             stopnet_pos_weight=c.stopnet_pos_weight,
                             ga_sigma=0.4)
    if args.restore_path:
        print(f" > Restoring from {os.path.basename(args.restore_path)}...")
        checkpoint = torch.load(args.restore_path, map_location="cpu")
        try:
            print(" > Restoring Model...")
            model.load_state_dict(checkpoint["model"])
            # optimizer restore
            print(" > Restoring Optimizer...")
            optimizer.load_state_dict(checkpoint["optimizer"])
            if "scaler" in checkpoint and c.mixed_precision:
                print(" > Restoring AMP Scaler...")
                scaler.load_state_dict(checkpoint["scaler"])
            if c.reinit_layers:
                raise RuntimeError
        except (KeyError, RuntimeError):
            print(" > Partial model initialization...")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint["model"], c)
            # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
            # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group["lr"] = c.lr
        print(" > Model restored from step %d" % checkpoint["step"],
              flush=True)
        args.restore_step = checkpoint["step"]
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if args.restore_step == 0 or not args.best_path:
        best_loss = float("inf")
        print(" > Starting with inf best loss.")
    else:
        print(" > Restoring best loss from "
              f"{os.path.basename(args.best_path)} ...")
        best_loss = torch.load(args.best_path,
                               map_location="cpu")["model_loss"]
        print(f" > Starting with loaded last best loss {best_loss}.")
    keep_all_best = c.get("keep_all_best", False)
    keep_after = c.get("keep_after", 10000)  # void if keep_all_best False

    # define data loaders
    train_loader = setup_loader(ap,
                                model.decoder.r,
                                is_val=False,
                                verbose=True)
    eval_loader = setup_loader(ap, model.decoder.r, is_val=True)

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
            if c.bidirectional_decoder:
                model.decoder_backward.set_r(r)
            train_loader.dataset.outputs_per_step = r
            eval_loader.dataset.outputs_per_step = r
            train_loader = setup_loader(ap,
                                        model.decoder.r,
                                        is_val=False,
                                        dataset=train_loader.dataset)
            eval_loader = setup_loader(ap,
                                       model.decoder.r,
                                       is_val=True,
                                       dataset=eval_loader.dataset)
            print("\n > Number of output frames:", model.decoder.r)
        # train one epoch
        train_avg_loss_dict, global_step = train(
            train_loader,
            model,
            criterion,
            optimizer,
            optimizer_st,
            scheduler,
            ap,
            global_step,
            epoch,
            scaler,
            scaler_st,
        )
        # eval one epoch
        eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict["avg_postnet_loss"]
        if c.run_eval:
            target_loss = eval_avg_loss_dict["avg_postnet_loss"]
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model,
            optimizer,
            global_step,
            epoch,
            c.r,
            OUT_PATH,
            model_characters,
            keep_all_best=keep_all_best,
            keep_after=keep_after,
            scaler=scaler.state_dict() if c.mixed_precision else None,
        )
Exemplo n.º 6
0
Arquivo: train.py Projeto: zhxfl/TTS
def main(args):  #pylint: disable=redefined-outer-name
    # Audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    if c.use_speaker_embedding:
        speakers = get_speakers(c.data_path, c.meta_file_train, c.dataset)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    model = setup_model(num_chars, num_speakers, c)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    if c.loss_masking:
        criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"
                                                  ] else MSELossMasked()
    else:
        criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"
                                               ] else nn.MSELoss()
    criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model = model.cuda()
        criterion.cuda()
        if criterion_st:
            criterion_st.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.lr_decay:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
        print(" > Number of outputs per iteration:", model.decoder.r)

        train_loss, global_step = train(model, criterion, criterion_st,
                                        optimizer, optimizer_st, scheduler, ap,
                                        global_step, epoch)
        val_loss = evaluate(model, criterion, criterion_st, ap, global_step,
                            epoch)
        print(" | > Training Loss: {:.5f}   Validation Loss: {:.5f}".format(
            train_loss, val_loss),
              flush=True)
        target_loss = train_loss
        if c.run_eval:
            target_loss = val_loss
        best_loss = save_best_model(model, optimizer, target_loss, best_loss,
                                    OUT_PATH, global_step, epoch)
Exemplo n.º 7
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global train_data, eval_data

    # setup audio processor
    ap = AudioProcessor(**c.audio)

    # print(f" > Loading wavs from: {c.data_path}")
    # if c.feature_path is not None:
    #     print(f" > Loading features from: {c.feature_path}")
    #     eval_data, train_data = load_wav_feat_data(
    #         c.data_path, c.feature_path, c.eval_split_size
    #     )
    # else:
    #     mel_feat_path = os.path.join(OUT_PATH, "mel")
    #     feat_data = find_feat_files(mel_feat_path)
    #     if feat_data:
    #         print(f" > Loading features from: {mel_feat_path}")
    #         eval_data, train_data = load_wav_feat_data(
    #             c.data_path, mel_feat_path, c.eval_split_size
    #         )
    #     else:
    #         print(" > No feature data found. Preprocessing...")
    #         # preprocessing feature data from given wav files
    #         preprocess_wav_files(OUT_PATH, CONFIG, ap)
    #         eval_data, train_data = load_wav_feat_data(
    #             c.data_path, mel_feat_path, c.eval_split_size
    #         )

    print(f" > Loading wavs from: {c.data_path}")
    if c.feature_path is not None:
        print(f" > Loading features from: {c.feature_path}")
        eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path,
                                                   c.eval_split_size)
    else:
        eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)
    # setup model
    model_wavernn = setup_wavernn(c)

    # setup amp scaler
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None

    # define train functions
    if c.mode == "mold":
        criterion = discretized_mix_logistic_loss
    elif c.mode == "gauss":
        criterion = gaussian_loss
    elif isinstance(c.mode, int):
        criterion = torch.nn.CrossEntropyLoss()

    if use_cuda:
        model_wavernn.cuda()
        if isinstance(c.mode, int):
            criterion.cuda()

    optimizer = RAdam(model_wavernn.parameters(), lr=c.lr, weight_decay=0)

    scheduler = None
    if "lr_scheduler" in c:
        scheduler = getattr(torch.optim.lr_scheduler, c.lr_scheduler)
        scheduler = scheduler(optimizer, **c.lr_scheduler_params)
    # slow start for the first 5 epochs
    # lr_lambda = lambda epoch: min(epoch / c.warmup_steps, 1)
    # scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)

    # restore any checkpoint
    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location="cpu")
        try:
            print(" > Restoring Model...")
            model_wavernn.load_state_dict(checkpoint["model"])
            print(" > Restoring Optimizer...")
            optimizer.load_state_dict(checkpoint["optimizer"])
            if "scheduler" in checkpoint:
                print(" > Restoring Generator LR Scheduler...")
                scheduler.load_state_dict(checkpoint["scheduler"])
                scheduler.optimizer = optimizer
            if "scaler" in checkpoint and c.mixed_precision:
                print(" > Restoring AMP Scaler...")
                scaler.load_state_dict(checkpoint["scaler"])
        except RuntimeError:
            # retore only matching layers.
            print(" > Partial model initialization...")
            model_dict = model_wavernn.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint["model"], c)
            model_wavernn.load_state_dict(model_dict)

        print(" > Model restored from step %d" % checkpoint["step"],
              flush=True)
        args.restore_step = checkpoint["step"]
    else:
        args.restore_step = 0

    # DISTRIBUTED
    # if num_gpus > 1:
    #     model = apply_gradient_allreduce(model)

    num_parameters = count_parameters(model_wavernn)
    print(" > Model has {} parameters".format(num_parameters), flush=True)

    if "best_loss" not in locals():
        best_loss = float("inf")

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        _, global_step = train(model_wavernn, optimizer, criterion, scheduler,
                               scaler, ap, global_step, epoch)
        eval_avg_loss_dict = evaluate(model_wavernn, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = eval_avg_loss_dict["avg_model_loss"]
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model_wavernn,
            optimizer,
            scheduler,
            None,
            None,
            None,
            global_step,
            epoch,
            OUT_PATH,
            model_losses=eval_avg_loss_dict,
            scaler=scaler.state_dict() if c.mixed_precision else None)
Exemplo n.º 8
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(
            len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(
            len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    if c.use_speaker_embedding:
        speakers = get_speakers(meta_data_train)
        if args.restore_path:
            if c.use_external_speaker_embedding_file:  # if restore checkpoint and use External Embedding file
                prev_out_path = os.path.dirname(args.restore_path)
                speaker_mapping = load_speaker_mapping(prev_out_path)
                if not speaker_mapping:
                    print(
                        "WARNING: speakers.json was not found in restore_path, trying to use CONFIG.external_speaker_embedding_file"
                    )
                    speaker_mapping = load_speaker_mapping(
                        c.external_speaker_embedding_file)
                    if not speaker_mapping:
                        raise RuntimeError(
                            "You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.external_speaker_embedding_file"
                        )
                speaker_embedding_dim = len(speaker_mapping[list(
                    speaker_mapping.keys())[0]]['embedding'])
            elif not c.use_external_speaker_embedding_file:  # if restore checkpoint and don't use External Embedding file
                prev_out_path = os.path.dirname(args.restore_path)
                speaker_mapping = load_speaker_mapping(prev_out_path)
                speaker_embedding_dim = None
                assert all([speaker in speaker_mapping
                            for speaker in speakers]), "As of now you, you cannot " \
                                                    "introduce new speakers to " \
                                                    "a previously trained model."
        elif c.use_external_speaker_embedding_file and c.external_speaker_embedding_file:  # if start new train using External Embedding file
            speaker_mapping = load_speaker_mapping(
                c.external_speaker_embedding_file)
            speaker_embedding_dim = len(speaker_mapping[list(
                speaker_mapping.keys())[0]]['embedding'])
        elif c.use_external_speaker_embedding_file and not c.external_speaker_embedding_file:  # if start new train using External Embedding file and don't pass external embedding file
            raise "use_external_speaker_embedding_file is True, so you need pass a external speaker embedding file, run GE2E-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb or AngularPrototypical-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb notebook in notebooks/ folder"
        else:  # if start new train and don't use External Embedding file
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
            speaker_embedding_dim = None
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0
        speaker_embedding_dim = None
        speaker_mapping = None

    model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)

    params = set_weight_decay(model, c.wd)
    optimizer = RAdam(params, lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    if c.apex_amp_level == "O1":
        # pylint: disable=import-outside-toplevel
        from apex import amp
        model.cuda()
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=c.apex_amp_level)
    else:
        amp = None

    # setup criterion
    criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except KeyError:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
            # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
            model.load_state_dict(model_dict)
            del model_dict

        if amp and 'amp' in checkpoint:
            amp.load_state_dict(checkpoint['amp'])

        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
            if c.bidirectional_decoder:
                model.decoder_backward.set_r(r)
            print("\n > Number of output frames:", model.decoder.r)
        train_avg_loss_dict, global_step = train(model, criterion, optimizer,
                                                 optimizer_st, scheduler, ap,
                                                 global_step, epoch, amp,
                                                 speaker_mapping)
        eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch,
                                      speaker_mapping)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_postnet_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_postnet_loss']
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model,
            optimizer,
            global_step,
            epoch,
            c.r,
            OUT_PATH,
            amp_state_dict=amp.state_dict() if amp else None)
Exemplo n.º 9
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # parse speakers
    if c.use_speaker_embedding:
        speakers = get_speakers(meta_data_train)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    model = setup_model(num_chars, num_speakers, c)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    params = set_weight_decay(model, c.wd)
    optimizer = RAdam(params, lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    # setup criterion
    criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
            if c.bidirectional_decoder:
                model.decoder_backward.set_r(r)
            print("\n > Number of output frames:", model.decoder.r)

        train_avg_loss_dict, global_step = train(model, criterion, optimizer,
                                                 optimizer_st, scheduler, ap,
                                                 global_step, epoch)
        eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_postnet_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_postnet_loss']
        best_loss = save_best_model(target_loss, best_loss, model, optimizer,
                                    global_step, epoch, c.r, OUT_PATH)
Exemplo n.º 10
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
    # Audio processor
    ap = AudioProcessor(**config.audio.to_dict())
    if config.has("characters") and config.characters:
        symbols, phonemes = make_symbols(**config.characters.to_dict())

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         config.distributed["backend"],
                         config.distributed["url"])

    # set model characters
    model_characters = phonemes if config.use_phonemes else symbols
    num_chars = len(model_characters)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(config.datasets,
                                                     eval_split=True)

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
        config, args, meta_data_train, OUT_PATH)

    # setup model
    model = setup_model(num_chars,
                        num_speakers,
                        config,
                        speaker_embedding_dim=speaker_embedding_dim)
    optimizer = RAdam(model.parameters(),
                      lr=config.lr,
                      weight_decay=0,
                      betas=(0.9, 0.98),
                      eps=1e-9)
    criterion = AlignTTSLoss(config)

    if args.restore_path:
        print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
        checkpoint = torch.load(args.restore_path, map_location="cpu")
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint["optimizer"])
            if config.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint["model"])
        except:  # pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint["model"], config)
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group["initial_lr"] = config.lr
        print(" > Model restored from step %d" % checkpoint["step"],
              flush=True)
        args.restore_step = checkpoint["step"]
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP_th(model, device_ids=[args.rank])

    if config.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=config.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if args.restore_step == 0 or not args.best_path:
        best_loss = float("inf")
        print(" > Starting with inf best loss.")
    else:
        print(" > Restoring best loss from "
              f"{os.path.basename(args.best_path)} ...")
        best_loss = torch.load(args.best_path,
                               map_location="cpu")["model_loss"]
        print(f" > Starting with loaded last best loss {best_loss}.")
    keep_all_best = config.keep_all_best
    keep_after = config.keep_after  # void if keep_all_best False

    # define dataloaders
    train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
    eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)

    global_step = args.restore_step

    def set_phase():
        """Set AlignTTS training phase"""
        if isinstance(config.phase_start_steps, list):
            vals = [i < global_step for i in config.phase_start_steps]
            if not True in vals:
                phase = 0
            else:
                phase = (
                    len(config.phase_start_steps) -
                    [i < global_step
                     for i in config.phase_start_steps][::-1].index(True) - 1)
        else:
            phase = None
        return phase

    for epoch in range(0, config.epochs):
        cur_phase = set_phase()
        print(f"\n > Current AlignTTS phase: {cur_phase}")
        c_logger.print_epoch_start(epoch, config.epochs)
        train_avg_loss_dict, global_step = train(train_loader, model,
                                                 criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch, cur_phase)
        eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
                                      global_step, epoch, cur_phase)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict["avg_loss"]
        if config.run_eval:
            target_loss = eval_avg_loss_dict["avg_loss"]
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model,
            optimizer,
            global_step,
            epoch,
            1,
            OUT_PATH,
            model_characters,
            keep_all_best=keep_all_best,
            keep_after=keep_after,
        )
Exemplo n.º 11
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global train_data, eval_data
    print(f" > Loading wavs from: {c.data_path}")
    if c.feature_path is not None:
        print(f" > Loading features from: {c.feature_path}")
        eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path,
                                                   c.eval_split_size)
    else:
        #eval_data, train_data = load_file_data(c.data_path, c.eval_split_size)
        eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)

    # setup audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    # if num_gpus > 1:
    # init_distributed(args.rank, num_gpus, args.group_id,
    #  c.distributed["backend"], c.distributed["url"])

    # setup models
    model_gen = setup_generator(c)
    model_disc = setup_discriminator(c)

    # setup optimizers
    optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0)
    optimizer_disc = RAdam(model_disc.parameters(),
                           lr=c.lr_disc,
                           weight_decay=0)

    scaler_G = GradScaler()
    scaler_D = GradScaler()

    # schedulers
    scheduler_gen = None
    scheduler_disc = None
    if 'lr_scheduler_gen' in c:
        scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen)
        scheduler_gen = scheduler_gen(optimizer_gen,
                                      **c.lr_scheduler_gen_params)
    if 'lr_scheduler_disc' in c:
        scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc)
        scheduler_disc = scheduler_disc(optimizer_disc,
                                        **c.lr_scheduler_disc_params)

    # setup criterion
    criterion_gen = GeneratorLoss(c)
    criterion_disc = DiscriminatorLoss(c)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Generator Model...")
            model_gen.load_state_dict(checkpoint['model'])
            print(" > Restoring Generator Optimizer...")
            optimizer_gen.load_state_dict(checkpoint['optimizer'])
            print(" > Restoring Discriminator Model...")
            model_disc.load_state_dict(checkpoint['model_disc'])
            print(" > Restoring Discriminator Optimizer...")
            optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
            if 'scheduler' in checkpoint:
                print(" > Restoring Generator LR Scheduler...")
                scheduler_gen.load_state_dict(checkpoint['scheduler'])
                # NOTE: Not sure if necessary
                scheduler_gen.optimizer = optimizer_gen
            if 'scheduler_disc' in checkpoint:
                print(" > Restoring Discriminator LR Scheduler...")
                scheduler_disc.load_state_dict(checkpoint['scheduler_disc'])
                scheduler_disc.optimizer = optimizer_disc
        except RuntimeError:
            # retore only matching layers.
            print(" > Partial model initialization...")
            model_dict = model_gen.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model_gen.load_state_dict(model_dict)

            model_dict = model_disc.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c)
            model_disc.load_state_dict(model_dict)
            del model_dict

        # reset lr if not countinuining training.
        for group in optimizer_gen.param_groups:
            group['lr'] = c.lr_gen

        for group in optimizer_disc.param_groups:
            group['lr'] = c.lr_disc

        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model_gen.cuda()
        criterion_gen.cuda()
        model_disc.cuda()
        criterion_disc.cuda()

    # DISTRUBUTED
    # if num_gpus > 1:
    #     model = apply_gradient_allreduce(model)

    num_params = count_parameters(model_gen)
    print(" > Generator has {} parameters".format(num_params), flush=True)
    num_params = count_parameters(model_disc)
    print(" > Discriminator has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        _, global_step = train(model_gen, criterion_gen, optimizer_gen,
                               model_disc, criterion_disc, optimizer_disc,
                               scaler_G, scaler_D, scheduler_gen,
                               scheduler_disc, ap, global_step, epoch)
        eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc,
                                      criterion_disc, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = eval_avg_loss_dict[c.target_loss]
        best_loss = save_best_model(target_loss,
                                    best_loss,
                                    model_gen,
                                    optimizer_gen,
                                    scheduler_gen,
                                    model_disc,
                                    optimizer_disc,
                                    scheduler_disc,
                                    global_step,
                                    epoch,
                                    OUT_PATH,
                                    model_losses=eval_avg_loss_dict)
Exemplo n.º 12
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    if c.use_speaker_embedding:
        speakers = get_speakers(meta_data_train)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    # setup model
    model = setup_model(num_chars, num_speakers, c)
    optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
    criterion = GlowTTSLoss()

    if c.apex_amp_level:
        # pylint: disable=import-outside-toplevel
        from apex import amp
        from apex.parallel import DistributedDataParallel as DDP
        model.cuda()
        model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
    else:
        amp = None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except: #pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        if amp and 'amp' in checkpoint:
            amp.load_state_dict(checkpoint['amp'])

        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    model = data_depended_init(model, ap)
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        train_avg_loss_dict, global_step = train(model, criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch, amp)
        eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_loss']
        best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
                                    OUT_PATH, amp_state_dict=amp.state_dict() if amp else None)
Exemplo n.º 13
0
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(
            len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(
            len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
        c, args, meta_data_train, OUT_PATH)

    model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)

    # scalers for mixed precision training
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
    scaler_st = torch.cuda.amp.GradScaler(
    ) if c.mixed_precision and c.separate_stopnet else None

    params = set_weight_decay(model, c.wd)
    optimizer = RAdam(params, lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    # setup criterion
    criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Model.")
            model.load_state_dict(checkpoint['model'])
            # optimizer restore
            print(" > Restoring Optimizer.")
            optimizer.load_state_dict(checkpoint['optimizer'])
            if "scaler" in checkpoint and c.mixed_precision:
                print(" > Restoring AMP Scaler...")
                scaler.load_state_dict(checkpoint["scaler"])
            if c.reinit_layers:
                raise RuntimeError
        except KeyError:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
            # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
            if c.bidirectional_decoder:
                model.decoder_backward.set_r(r)
            print("\n > Number of output frames:", model.decoder.r)
        train_avg_loss_dict, global_step = train(model, criterion, optimizer,
                                                 optimizer_st, scheduler, ap,
                                                 global_step, epoch, scaler,
                                                 scaler_st, speaker_mapping)
        eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch,
                                      speaker_mapping)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_postnet_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_postnet_loss']
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model,
            optimizer,
            global_step,
            epoch,
            c.r,
            OUT_PATH,
            scaler=scaler.state_dict() if c.mixed_precision else None)