Exemplo n.º 1
0
def main():
    text_ckpt = torch.load(
        '/home/zwei/Dev/AttributeNet3/TextClassificationV2/ckpts/TextCNN_googlenews_NLT_Static.pth.tar'
    )
    args_model = text_ckpt['args_model']
    args_data = text_ckpt['args_data']
    text_model = TextCNN(args_model)
    model_tag2idx = args_data.tag2idx
    text_model.load_state_dict(text_ckpt['state_dict'], strict=True)
    vocab_idx2tag = loadpickle(
        '/home/zwei/Dev/AttributeNet3/AdobeStockSelection/EmotionNetFinal/tag2idx.pkl'
    )['idx2tag']
    dataset = loadpickle(
        '/home/zwei/Dev/AttributeNet3/AdobeStockSelection/EmotionNetFinal/CNNsplit_tagidx_36534_test.pkl'
    )
    text_model.eval()
    emotion_tags = loadpickle(
        '/home/zwei/Dev/AttributeNet3/AdobeStockSelection/EmotionNetFinal/etag2idx.pkl'
    )['key2idx']

    image_url_dict = loadpickle(
        '/home/zwei/Dev/AttributeNet3/AdobeStockSelection/RetrieveSelected778/data_v2/dataset_image_urls.pkl'
    )
    new_dataset = []

    for data_idx, s_data in tqdm.tqdm(enumerate(dataset), total=len(dataset)):

        x_tags = [vocab_idx2tag[x] for x in s_data[1]]
        x_tag_ids = []
        x_tag_names = []
        x_emotion_tags = []
        for x_tag in x_tags:
            if x_tag in model_tag2idx:
                x_tag_ids.append(model_tag2idx[x_tag])
                x_tag_names.append(x_tag)
                if x_tag in emotion_tags:
                    x_emotion_tags.append(x_tag)
        x_tag_ids = pad_sentences(x_tag_ids, args_model.max_len,
                                  args_model.vocab_size + 1)
        x_tag_ids = torch.LongTensor(x_tag_ids).unsqueeze(0)
        predicts = F.softmax(text_model(x_tag_ids)[0],
                             dim=1).squeeze(0).cpu().data.numpy()
        new_dataset.append([s_data[0], predicts.tolist()])

        if data_idx % 50000 == 0:
            image_cid = int(get_image_cid_from_url(s_data[0], location=1))

            if image_cid in image_url_dict:
                print("{}".format(image_url_dict[image_cid]))
                print(", ".join(x_emotion_tags))
                print(", ".join(x_tag_names))
                print(', '.join(
                    '{}({:.2f})'.format(idx2emotion[i], predicts[i])
                    for i in range(len(predicts))))

    save2pickle(
        '/home/zwei/Dev/AttributeNet3/AdobeStockSelection/EmotionNetFinal/CNNsplit_distill8_test.pkl',
        new_dataset)
Exemplo n.º 2
0
# Copyright (c) 2019 Zijun Wei.
# Licensed under the MIT License.
# Author: Zijun Wei
# Usage(TODO):
# Email: [email protected]
# Created: 13/Mar/2019 19:56
import torch
from TextClassificationV2.models.TextCNN import TextCNN_NLT
from CNNs.models.resnet import load_state_dict
from PyUtils.pickle_utils import loadpickle

if __name__ == '__main__':

    ckpt_file = '/home/zwei/Dev/AttributeNet3/TextClassificationV2/ckpts/TextCNN_googlenews_NLT_Static.pth.tar'

    ckpt_info = torch.load(ckpt_file)

    args_model = ckpt_info['args_model']
    text_model = TextCNN_NLT(args_model)

    load_state_dict(text_model, ckpt_info['state_dict'])

    x_weight = text_model.embedding.weight[1]

    args_data = ckpt_info['args_data']
    embed_dict = loadpickle(
        '/home/zwei/Dev/AttributeNet3/LanguageData/word2vec_dicts/googlenews_S_w2v_dict.pl'
    )
    x_weight_from_data = embed_dict[args_data.idx2tag[1]]
    print("Done")
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="Pytorch Image CNN training from Configure Files")
    parser.add_argument(
        '--config_file',
        required=True,
        help="This scripts only accepts parameters from Json files")
    input_args = parser.parse_args()

    config_file = input_args.config_file

    args = parse_config(config_file)
    if args.name is None:
        args.name = get_stem(config_file)

    torch.set_default_tensor_type('torch.FloatTensor')
    # best_prec1 = 0

    args.script_name = get_stem(__file__)
    # current_time_str = get_date_str()

    print_func = print

    if args.device:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.device

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    args.distributed = args.world_size > 1

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size)

    if args.pretrained:
        print_func("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True,
                                           num_classes=args.num_classes)
    else:
        print_func("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=False,
                                           num_classes=args.num_classes)

    if args.gpu is not None:
        model = model.cuda(args.gpu)
    elif args.distributed:
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model)
    else:
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
            # model = model.cuda()

    if args.visual_model:
        if os.path.isfile(args.visual_model):
            print_func("=> loading checkpoint '{}'".format(args.visual_model))
            checkpoint = torch.load(args.visual_model)
            model.load_state_dict(checkpoint['state_dict'], strict=True)
            # import collections
            # if isinstance(checkpoint, collections.OrderedDict):
            #     load_state_dict(model, checkpoint, exclude_layers=['fc.weight', 'fc.bias'])
            #
            #
            # else:
            #     load_state_dict(model, checkpoint['state_dict'], exclude_layers=['module.fc.weight', 'module.fc.bias'])
            #     print_func("=> loaded checkpoint '{}' (epoch {})"
            #           .format(args.visual_model, checkpoint['epoch']))
        else:
            print_func("=> no checkpoint found at '{}'".format(
                args.visual_model))
            return
    else:
        print_func(
            "=> This script is for fine-tuning only, please double check '{}'".
            format(args.visual_model))
        print_func("Now using randomly initialized parameters!")

    cudnn.benchmark = True

    from PyUtils.pickle_utils import loadpickle

    import numpy as np
    from PublicEmotionDatasets.Emotic.constants import emotion_full_words_690 as emotion_self_words

    from torchvision.datasets.folder import default_loader
    # tag_wordvectors = loadpickle(args.text_embed)
    text_ckpt = torch.load(args.text_ckpt)
    args_textmodel = text_ckpt['args_model']
    args_textdata = text_ckpt['args_data']
    text_model = TextCNN_NLT(args_textmodel)
    text_model.load_state_dict(text_ckpt['state_dict'], strict=True)
    text_model.eval()
    idx2tag = args_textdata.idx2tag
    tag2idx = args_textdata.tag2idx
    print_func(" => loading word2vec parameters: {}".format(args.text_ckpt))

    emotic_emotion_explaintations = {}

    for x_key in emotion_self_words:
        x_words = emotion_self_words[x_key].split(',')
        x_id = [
            tag2idx[x] if x in tag2idx else args_textmodel.vocab_size + 2
            for x in x_words
        ]
        x_id_padded = x_id + [args_textmodel.vocab_size + 1
                              ] * (args_textmodel.max_len - len(x_id))
        x_id_padded = torch.LongTensor(x_id_padded).unsqueeze(0)

        item = {}
        item['pred'] = []
        item['label'] = []
        item['target_matrix'] = text_model(x_id_padded)[-2].squeeze(
            0).cpu().data.numpy()[:len(x_id)]
        item['description'] = x_words
        emotic_emotion_explaintations[x_key] = item

    val_list = loadpickle(args.val_file)
    image_directory = args.data_dir
    from CNNs.datasets.multilabel import get_val_simple_transform
    val_transform = get_val_simple_transform()
    model.eval()

    import tqdm
    for i, (input_image_file, target, _,
            _) in tqdm.tqdm(enumerate(val_list),
                            desc="Evaluating Peace",
                            total=len(val_list)):
        # measure data loading time

        image_path = os.path.join(image_directory, input_image_file)
        input_image = default_loader(image_path)
        input_image = val_transform(input_image)

        if args.gpu is not None:
            input_image = input_image.cuda(args.gpu, non_blocking=True)
        input_image = input_image.unsqueeze(0).cuda()

        # target_idx = target.nonzero() [:,1]

        # compute output
        output, output_proj = model(input_image)

        output_proj = output_proj.cpu().data.numpy()
        target_labels = set([x[0] for x in target.most_common()])

        for x_key in emotic_emotion_explaintations:

            dot_product_label = cosine_similarity(
                output_proj,
                emotic_emotion_explaintations[x_key]['target_matrix'])[0]
            pred_score = np.average(dot_product_label)
            emotic_emotion_explaintations[x_key]['pred'].append(pred_score)
            if x_key in target_labels:
                emotic_emotion_explaintations[x_key]['label'].append(1)
            else:
                emotic_emotion_explaintations[x_key]['label'].append(0)

    from sklearn.metrics import average_precision_score
    full_AP = []
    for x_key in emotic_emotion_explaintations:
        full_pred = np.array(emotic_emotion_explaintations[x_key]['pred'])
        full_label = np.array(emotic_emotion_explaintations[x_key]['label'])
        AP = average_precision_score(full_label, full_pred)
        if np.isnan(AP):
            print("{} is Nan".format(x_key))
            continue
        full_AP.append(AP)
        print("{}\t{:.4f}".format(x_key, AP * 100))
    AvgAP = np.mean(full_AP)
    print("Avg AP: {:.2f}".format(AvgAP * 100))
def train(train_set, val_set, args_data, args_model, args_hyper):
    wordvec_type = args_hyper.w2v_type  # or selftrained or googlenews
    wordvec_file = '/home/zwei/Dev/AttributeNet3/LanguageData/word2vec_dicts/' \
                   '{}_w2v_dict.pl'.format(wordvec_type)

    print("Loading from {}".format(wordvec_type))
    pretrained_w2v = loadpickle(wordvec_file)

    #This is only creating a vocabulary that exists in th
    wv_matrix = []
    words_not_found = []
    for i in range(len(args_data.vocab)):
        word = args_data.idx2tag[i]
        if word in pretrained_w2v:
            wv_matrix.append(pretrained_w2v[word])
        else:
            words_not_found.append(word)
            # print("{} not found in dictrionary, will use random".format(word))
            wv_matrix.append(
                np.random.uniform(-0.01, 0.01,
                                  args_hyper.word_dim).astype("float32"))
    print("{} words were not found".format(len(words_not_found)))
    # one for UNK and one for zero padding
    wv_matrix.append(
        np.random.uniform(-0.01, 0.01, args_hyper.word_dim).astype("float32"))
    wv_matrix.append(np.zeros(args_hyper.word_dim).astype("float32"))
    wv_matrix = np.array(wv_matrix)

    model = TextCNN(args_model, init_wv=wv_matrix).cuda()

    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = optim.Adadelta(parameters, args_hyper.learning_rate)

    scheduler = lr_scheduler.MultiStepLR(
        optimizer, [int(x) for x in args_hyper.lr_schedule.split(',')],
        gamma=0.1)
    max_dev_top1 = 0
    max_dev_hits = 0
    max_test_acc = 0
    best_model = None
    model.train()

    report_params(model)
    for e in range(args_hyper.epoch):
        train_set = shuffle(train_set)
        train_losses = AverageMeter()
        train_top1 = AverageMeter()
        train_hits = AverageMeter()
        scheduler.step()
        current_lr = optimizer.param_groups[0]['lr']
        model.train()

        for i in tqdm.tqdm(range(0, len(train_set), args_hyper.batch_size)):
            batch_range = min(args_hyper.batch_size, len(train_set) - i)

            # add random dropping words:
            batch_x = []

            for sent in train_set[i:i + batch_range]:
                x_sent = sent[0]
                drop_thre = 0.2
                x_collected_words = []
                for x_word in x_sent:
                    p = random.uniform(0, 1)
                    if p >= drop_thre:
                        x_collected_words.append(args_data.tag2idx[x_word])
                if len(x_collected_words) >= args_model.max_len:
                    batch_x.append(x_collected_words[:args_model.max_len])
                else:
                    batch_x.append(
                        x_collected_words + [args_model.vocab_size + 1] *
                        (args_model.max_len - len(x_collected_words)))

            batch_y = [c[1] for c in train_set[i:i + batch_range]]

            torch_x = Variable(torch.LongTensor(batch_x)).cuda()
            torch_y = Variable(torch.FloatTensor(batch_y)).cuda()

            model_output = model(torch_x)
            pred = model_output[0]
            log_softmax_output = F.log_softmax(pred, dim=1)
            loss = -torch.sum(log_softmax_output * torch_y) / pred.shape[0]

            optimizer.zero_grad()
            loss.backward()
            nn.utils.clip_grad_norm_(parameters, max_norm=args_hyper.max_norm)
            optimizer.step()

            pred_idx = np.argmax(pred.cpu().data.numpy(), axis=1)
            train_losses.update(loss.item(), batch_range)

            # # FIXME: to top 1 and top-hit
            top1_batch, _, _ = multilabelTop1(pred_idx, batch_y)
            train_top1.update(top1_batch, len(pred_idx))

            hits_batch, _, _ = multilabelHits(pred_idx, batch_y)
            train_hits.update(hits_batch, len(pred_idx))

        dev_top1, dev_hits, dev_loss = test(val_set, model, args_data,
                                            args_model)

        if dev_top1 > max_dev_top1:
            max_dev_top1 = dev_top1
            best_model = copy.deepcopy(model)

        if dev_hits > max_dev_hits:
            max_dev_hits = dev_hits

        print(
            'epoch: {} lr: {:.6f}, dev_top1: {:.2f}, dev_hits: {:.2f}, dev_loss: {:.2f}, '
            'train_top1: {:.2f}, train_hits: {:.2f}, train_loss:{:.2f}, max_dev_top1: {:.2f}, '
            'max_dev_hits: {:.2f}'.format(e + 1, current_lr, dev_top1 * 100,
                                          dev_hits * 100, dev_loss,
                                          train_top1.avg * 100,
                                          train_hits.avg * 100,
                                          train_losses.avg, max_dev_top1 * 100,
                                          max_dev_hits * 100))

    print("max dev top1: {:.2f},\tmax dev hits: {:.2f}".format(
        max_dev_top1, max_dev_hits))
    return best_model
def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="Pytorch Image CNN training from Configure Files")
    parser.add_argument(
        '--config_file',
        required=True,
        help="This scripts only accepts parameters from Json files")
    input_args = parser.parse_args()

    config_file = input_args.config_file

    args = parse_config(config_file)
    if args.name is None:
        args.name = get_stem(config_file)

    torch.set_default_tensor_type('torch.FloatTensor')
    best_prec1 = 0

    args.script_name = get_stem(__file__)
    current_time_str = get_date_str()
    # if args.resume is None:
    if args.save_directory is None:
        save_directory = get_dir(
            os.path.join(project_root, 'ckpts2', '{:s}'.format(args.name),
                         '{:s}-{:s}'.format(args.ID, current_time_str)))
    else:
        save_directory = get_dir(
            os.path.join(project_root, 'ckpts2', args.save_directory))
    # else:
    #     save_directory = os.path.dirname(args.resume)
    print("Save to {}".format(save_directory))
    log_file = os.path.join(save_directory,
                            'log-{0}.txt'.format(current_time_str))
    logger = log_utils.get_logger(log_file)
    log_utils.print_config(vars(args), logger)

    print_func = logger.info
    print_func('ConfigFile: {}'.format(config_file))
    args.log_file = log_file

    if args.device:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.device

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    args.distributed = args.world_size > 1

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size)

    if args.pretrained:
        print_func("=> using pre-trained model '{}'".format(args.arch))
        visual_model = models.__dict__[args.arch](pretrained=True,
                                                  num_classes=args.num_classes)
    else:
        print_func("=> creating model '{}'".format(args.arch))
        visual_model = models.__dict__[args.arch](pretrained=False,
                                                  num_classes=args.num_classes)

    if args.freeze:
        visual_model = CNN_utils.freeze_all_except_fc(visual_model)

    if os.path.isfile(args.text_ckpt):
        print_func("=> loading checkpoint '{}'".format(args.text_ckpt))
        text_data = torch.load(args.text_ckpt)
        text_model = TextCNN(text_data['args_model'])
        # load_state_dict(text_model, text_data['state_dict'])
        text_model.load_state_dict(text_data['state_dict'], strict=True)
        text_model.eval()
        print_func("=> loaded checkpoint '{}' for text classification".format(
            args.text_ckpt))
        args.vocab_size = text_data['args_model'].vocab_size
    else:
        print_func("=> no checkpoint found at '{}'".format(args.text_ckpt))
        return

    # text_params = {
    #     # "Learning_SCHEDULE": [int(i) for i in args.lr_schedule.split(',')],
    #     # "LEARNING_RATE": args.learning_rate,
    #     "MAX_SENT_LEN": args.sent_len,
    #     "BATCH_SIZE": args.batch_size,
    #     "WORD_DIM": args.word_dim,
    #     "FILTER_NUM": args.filter_dim,
    #     "VOCAB_SIZE": len(text_data['tag2idx']), # FIXME: check here!
    #     "CLASS_SIZE": 8,
    #     "tag2idx": text_data['tag2idx'],
    #     "idx2tag": text_data['idx2tag'],
    # }
    # args.vocab_size = text_params['VOCAB_SIZE']
    # text_model = Text_Embed(**text_params)
    # text_model.load_state_dict(text_data['model'].state_dict(), strict=False)
    # # Not training Text Model, set to eval to freeze BN
    # text_model.eval()

    if args.gpu is not None:
        visual_model = visual_model.cuda(args.gpu)
        text_model = text_model.cuda((args.gpu))
    elif args.distributed:
        visual_model.cuda()
        visual_model = torch.nn.parallel.DistributedDataParallel(visual_model)
    else:
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            visual_model.features = torch.nn.DataParallel(
                visual_model.features)
            visual_model.cuda()
        else:
            visual_model = torch.nn.DataParallel(visual_model).cuda()
            text_model = torch.nn.DataParallel(text_model).cuda()

            # text_model = torch.nn.DataParallel(text_model).cuda()
    # define loss function (criterion) and optimizer
    # # Update: here
    # config = {'loss': {'type': 'simpleCrossEntropyLoss', 'args': {'param': None}}}
    # criterion = get_instance(loss_funcs, 'loss', config)
    # criterion = criterion.cuda(args.gpu)

    criterion = nn.CrossEntropyLoss(ignore_index=-1).cuda(args.gpu)

    optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,
                                       visual_model.parameters()),
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.lr_schedule:
        print_func("Using scheduled learning rate")
        scheduler = lr_scheduler.MultiStepLR(
            optimizer, [int(i) for i in args.lr_schedule.split(',')],
            gamma=0.1)
    else:
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
                                                   'min',
                                                   patience=args.lr_patience)

    # optimizer = torch.optim.SGD(model.parameters(), args.lr,
    #                             momentum=args.momentum,
    #                             weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print_func("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)

            import collections
            if isinstance(checkpoint, collections.OrderedDict):
                load_state_dict(visual_model, checkpoint)

            else:
                load_state_dict(visual_model, checkpoint['state_dict'])
                print_func("=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint['epoch']))

        else:
            print_func("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    model_total_params = sum(p.numel() for p in visual_model.parameters())
    model_grad_params = sum(p.numel() for p in visual_model.parameters()
                            if p.requires_grad)
    print_func("Total Parameters: {0}\t Gradient Parameters: {1}".format(
        model_total_params, model_grad_params))

    # Data loading code
    val_dataset = get_instance(custom_datasets, '{0}'.format(args.valloader),
                               args)
    if val_dataset is None:
        val_loader = None
    else:
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True,
                                                 collate_fn=none_collate)

    if args.evaluate:
        print_func('Validation Only')
        validate(val_loader, visual_model, criterion, args, print_func)
        return
    else:

        train_dataset = get_instance(custom_datasets,
                                     '{0}'.format(args.trainloader), args)

        if args.distributed:
            train_sampler = torch.utils.data.distributed.DistributedSampler(
                train_dataset)
        else:
            train_sampler = None

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.workers,
            pin_memory=True,
            sampler=train_sampler,
            collate_fn=none_collate)

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        if args.lr_schedule:
            # CNN_utils.adjust_learning_rate(optimizer, epoch, args.lr)
            scheduler.step()
        current_lr = optimizer.param_groups[0]['lr']

        print_func("Epoch: [{}], learning rate: {}".format(epoch, current_lr))

        # train for one epoch
        train(train_loader, visual_model, text_model, criterion, optimizer,
              epoch, args, print_func)

        # evaluate on validation set
        if val_loader:
            prec1, val_loss = validate(val_loader, visual_model, criterion,
                                       args, print_func)
        else:
            prec1 = 0
            val_loss = 0
        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        CNN_utils.save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': visual_model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            },
            is_best,
            file_directory=save_directory,
            epoch=epoch)

        if not args.lr_schedule:
            scheduler.step(val_loss)