Exemplo n.º 1
0
 def add_embedding(self):
     """Add embedding layer. that maps from vocabulary to vectors.
     inputs: a list of tensors each of which have a size of [batch_size, embed_size]
     """
     self.global_step = tf.Variable(0, name='global_step', trainable=False)
     vocab_sz = max(self.config.vocab_dict.values())
     with tf.variable_scope('embedding') as scp:
         self.exclude_reg_scope(scp)  ## exclude scope 추가
         if self.config.pre_trained:
             embed = utils.readEmbedding(
                 self.config.embed_path)  ## embedding 파일 조회
             embed_matrix, valid_mask = utils.mkEmbedMatrix(
                 embed,
                 dict(self.config.vocab_dict))  ## embedding matrix 생성
             embedding = tf.Variable(embed_matrix,
                                     'Embedding')  ## embedding 생성
             partial_update_embedding = entry_stop_gradients(
                 embedding, tf.expand_dims(valid_mask, 1)
             )  ## a tensor have the same value of target, but some entry will have no gradient during backprop
             embedding = tf.cond(
                 self.on_epoch < self.config.partial_update_until_epoch,
                 lambda: partial_update_embedding, lambda: embedding
             )  ## https://www.tensorflow.org/api_docs/python/tf/cond
         else:
             embedding = tf.get_variable('Embedding',
                                         [vocab_sz, self.config.embed_size],
                                         trainable=True)  ## embedding 생성
     return embedding
Exemplo n.º 2
0
    def add_loss_op(self, logits, labels):
        '''

        :param logits: shape(b_sz, c_num) type(float)
        :param labels: shape(b_sz,) type(int)
        :return:
        '''

        self.prediction = tf.argmax(logits, axis=-1, output_type=labels.dtype)

        self.accuracy = tf.reduce_mean(
            tf.cast(tf.equal(self.prediction, labels), tf.float32))

        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                              labels=labels)
        ce_loss = tf.reduce_mean(entry_stop_gradients(loss, self.stop))
        # ce_loss = tf.reduce_mean(loss)

        exclude_vars = nest.flatten(
            [[v for v in tf.trainable_variables(o.name)]
             for o in self.EX_REG_SCOPE])
        exclude_vars_2 = [
            v for v in tf.trainable_variables() if '/bias:' in v.name
        ]
        exclude_vars = exclude_vars + exclude_vars_2

        reg_var_list = [
            v for v in tf.trainable_variables() if v not in exclude_vars
        ]
        reg_loss = tf.add_n([tf.nn.l2_loss(v) for v in reg_var_list])
        self.param_cnt = np.sum(
            [np.prod(v.get_shape().as_list()) for v in reg_var_list])

        print('===' * 20)
        print('total reg parameter count: %.3f M' %
              (self.param_cnt / 1000000.))
        print('excluded variables from regularization')
        print([v.name for v in exclude_vars])
        print('===' * 20)

        print('regularized variables')
        print([
            '%s:%.3fM' % (v.name, np.prod(v.get_shape().as_list()) / 1000000.)
            for v in reg_var_list
        ])
        print('===' * 20)
        '''shape(b_sz,)'''
        self.ce_loss = ce_loss
        self.w_loss = tf.reduce_mean(tf.multiply(loss, self.ph_sample_weights))
        reg = self.config.reg

        return self.ce_loss + reg * reg_loss
Exemplo n.º 3
0
    def add_embedding(self):
        """Add embedding layer. that maps from vocabulary to vectors.
        inputs: a list of tensors each of which have a size of [batch_size, embed_size]
        """

        if self.config.pre_trained:
            embed = helper.readEmbedding(self.config.embed_path +
                                         str(self.config.embed_size))
            embed_matrix, valid_mask = helper.mkEmbedMatrix(
                embed, self.vocab.word_to_index)
            embedding = tf.Variable(embed_matrix, 'Embedding')
            embedding = entry_stop_gradients(embedding,
                                             tf.expand_dims(valid_mask, 1))
        else:
            embedding = tf.get_variable(
                'Embedding', [len(self.vocab), self.config.embed_size],
                trainable=True)
        return embedding
Exemplo n.º 4
0
 def add_embedding(self):
     """Add embedding layer. that maps from vocabulary to vectors.
     inputs: a list of tensors each of which have a size of [batch_size, embed_size]
     """
     self.global_step = tf.Variable(0, name='global_step', trainable=False)
     vocab_sz = max(self.config.vocab_dict.values())
     with tf.variable_scope('embedding') as scp:
         self.exclude_reg_scope(scp)
         if self.config.pre_trained:
             embed = utils.readEmbedding(self.config.embed_path)
             embed_matrix, valid_mask = utils.mkEmbedMatrix(
                 embed, dict(self.config.vocab_dict))
             embedding = tf.Variable(embed_matrix, 'Embedding')
             partial_update_embedding = entry_stop_gradients(
                 embedding, tf.expand_dims(valid_mask, 1))
             embedding = tf.cond(
                 self.on_epoch < self.config.partial_update_until_epoch,
                 lambda: partial_update_embedding, lambda: embedding)
         else:
             embedding = tf.get_variable('Embedding',
                                         [vocab_sz, self.config.embed_size],
                                         trainable=True)
     return embedding