def SS_selection(lep1, lep2): selection = PackedSelection() is_dilep = ((ak.num(lep1) + ak.num(lep2))==2) pos_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))<0) neg_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))>0) dilep2 = choose(lep2, 2) dilep1 = choose(lep1, 2) dilep = cross(lep2, lep1) is_SS = ( ak.any((dilep2['0'].charge * dilep2['1'].charge)>0, axis=1) | \ ak.any((dilep1['0'].charge * dilep1['1'].charge)>0, axis=1) | \ ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) ) selection.add('SS', is_SS) ss_reqs = ['SS'] ss_reqs_d = {sel: True for sel in ss_reqs} ss_selection = selection.require(**ss_reqs_d) return ss_selection
def dilep_baseline(self, omit=[], cutflow=None, tight=False, SS=True): ''' give it a cutflow object if you want it to be filed. cuts in the omit list will not be applied ''' self.selection = PackedSelection() is_dilep = ((ak.num(self.ele) + ak.num(self.mu))==2) pos_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))<0) neg_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))>0) lep0pt = ((ak.num(self.ele[(self.ele.pt>25)]) + ak.num(self.mu[(self.mu.pt>25)]))>0) lep1pt = ((ak.num(self.ele[(self.ele.pt>20)]) + ak.num(self.mu[(self.mu.pt>20)]))>1) lepveto = ((ak.num(self.ele_veto) + ak.num(self.mu_veto))==2) dimu = choose(self.mu, 2) diele = choose(self.ele, 2) dilep = cross(self.mu, self.ele) if SS: is_SS = ( ak.any((dimu['0'].charge * dimu['1'].charge)>0, axis=1) | \ ak.any((diele['0'].charge * diele['1'].charge)>0, axis=1) | \ ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) ) else: is_OS = ( ak.any((dimu['0'].charge * dimu['1'].charge)<0, axis=1) | \ ak.any((diele['0'].charge * diele['1'].charge)<0, axis=1) | \ ak.any((dilep['0'].charge * dilep['1'].charge)<0, axis=1) ) lepton = ak.concatenate([self.ele, self.mu], axis=1) lepton_pdgId_pt_ordered = ak.fill_none( ak.pad_none( lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True), 0) triggers = getTriggers(self.events, ak.flatten(lepton_pdgId_pt_ordered[:,0:1]), ak.flatten(lepton_pdgId_pt_ordered[:,1:2]), year=self.year, dataset=self.dataset) ht = ak.sum(self.jet_all.pt, axis=1) st = self.met.pt + ht + ak.sum(self.mu.pt, axis=1) + ak.sum(self.ele.pt, axis=1) self.selection.add('lepveto', lepveto) self.selection.add('dilep', is_dilep) #self.selection.add('filter', self.filters) self.selection.add('trigger', triggers) self.selection.add('p_T(lep0)>25', lep0pt) self.selection.add('p_T(lep1)>20', lep1pt) if SS: self.selection.add('SS', is_SS ) else: self.selection.add('OS', is_OS ) self.selection.add('N_jet>3', (ak.num(self.jet_all)>3) ) self.selection.add('N_jet>4', (ak.num(self.jet_all)>4) ) self.selection.add('N_central>2', (ak.num(self.jet_central)>2) ) self.selection.add('N_central>3', (ak.num(self.jet_central)>3) ) self.selection.add('N_btag>0', (ak.num(self.jet_btag)>0) ) self.selection.add('N_fwd>0', (ak.num(self.jet_fwd)>0) ) self.selection.add('MET>30', (self.met.pt>30) ) self.selection.add('MET>50', (self.met.pt>50) ) self.selection.add('ST>600', (st>600) ) ss_reqs = [ # 'filter', 'lepveto', 'dilep', 'p_T(lep0)>25', 'p_T(lep1)>20', 'trigger', 'SS' if SS else 'OS', 'N_jet>3', 'N_central>2', 'N_btag>0', 'MET>30', 'N_fwd>0', ] if tight: ss_reqs += [ 'N_jet>4', 'N_central>3', 'ST>600', 'MET>50', #'delta_eta', ] ss_reqs_d = { sel: True for sel in ss_reqs if not sel in omit } ss_selection = self.selection.require(**ss_reqs_d) if cutflow: # cutflow_reqs_d = {} for req in ss_reqs: cutflow_reqs_d.update({req: True}) cutflow.addRow( req, self.selection.require(**cutflow_reqs_d) ) return ss_selection
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet)>2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): ## Generated leptons gen_lep = ev.GenL leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))] trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))] # Get the leptons. This has changed a couple of times now, but we are using fakeable objects as baseline leptons. # The added p4 instance has the corrected pt (conePt for fakeable) and should be used for any following selection or calculation # Any additional correction (if we choose to do so) should be added here, e.g. Rochester corrections, ... ## Muons mu_v = Collections(ev, "Muon", "vetoTTH", year=year).get() # these include all muons, tight and fakeable mu_t = Collections(ev, "Muon", "tightSSTTH", year=year).get() mu_f = Collections(ev, "Muon", "fakeableSSTTH", year=year).get() muon = ak.concatenate([mu_t, mu_f], axis=1) muon['p4'] = get_four_vec_fromPtEtaPhiM(muon, get_pt(muon), muon.eta, muon.phi, muon.mass, copy=False) #FIXME new ## Electrons el_v = Collections(ev, "Electron", "vetoTTH", year=year).get() el_t = Collections(ev, "Electron", "tightSSTTH", year=year).get() el_f = Collections(ev, "Electron", "fakeableSSTTH", year=year).get() electron = ak.concatenate([el_t, el_f], axis=1) electron['p4'] = get_four_vec_fromPtEtaPhiM(electron, get_pt(electron), electron.eta, electron.phi, electron.mass, copy=False) #FIXME new if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): el_t_p = prompt(el_t) el_t_np = nonprompt(el_t) el_f_p = prompt(el_f) el_f_np = nonprompt(el_f) mu_t_p = prompt(mu_t) mu_t_np = nonprompt(mu_t) mu_f_p = prompt(mu_f) mu_f_np = nonprompt(mu_f) is_flipped = ( (el_t_p.matched_gen.pdgId*(-1) == el_t_p.pdgId) & (abs(el_t_p.pdgId) == 11) ) el_t_p_cc = el_t_p[~is_flipped] # this is tight, prompt, and charge consistent el_t_p_cf = el_t_p[is_flipped] # this is tight, prompt, and charge flipped ## Merge electrons and muons. These are fakeable leptons now lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.p4.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.p4.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] dilepton_mass = (leading_lepton.p4 + trailing_lepton.p4).mass dilepton_pt = (leading_lepton.p4 + trailing_lepton.p4).pt #dilepton_dR = delta_r(leading_lepton, trailing_lepton) dilepton_dR = leading_lepton.p4.delta_r(trailing_lepton.p4) lepton_pdgId_pt_ordered = ak.fill_none(ak.pad_none(lepton[ak.argsort(lepton.p4.pt, ascending=False)].pdgId, 2, clip=True), 0) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): n_nonprompt = getNonPromptFromFlavour(electron) + getNonPromptFromFlavour(muon) n_chargeflip = getChargeFlips(electron, ev.GenPart) + getChargeFlips(muon, ev.GenPart) gp = ev.GenPart gp_e = gp[((abs(gp.pdgId)==11)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))] gp_m = gp[((abs(gp.pdgId)==13)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))] n_gen_lep = ak.num(gp_e) + ak.num(gp_m) else: n_gen_lep = np.zeros(len(ev)) LL = (n_gen_lep > 2) # this is the classifier for LL events (should mainly be ttZ/tZ/WZ...) mt_lep_met = mt(lepton.p4.pt, lepton.p4.phi, ev.MET.pt, ev.MET.phi) min_mt_lep_met = ak.min(mt_lep_met, axis=1) ## Tau and other stuff tau = getTaus(ev) tau = tau[~match(tau, muon, deltaRCut=0.4)] tau = tau[~match(tau, electron, deltaRCut=0.4)] track = getIsoTracks(ev) ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort(jet.pt_nom, ascending=False)] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match(jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta)<2.4)] btag = getBTagsDeepFlavB(jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:,:2] bl = cross(lepton, high_score_btag) bl_dR = delta_r(bl['0'], bl['1']) min_bl_dR = ak.min(bl_dR, axis=1) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax(fwd.p, axis=1))] # highest momentum spectator # try to get either the most forward light jet, or if there's more than one with eta>1.7, the highest pt one most_fwd = light[ak.argsort(abs(light.eta))][:,0:1] #most_fwd = light[ak.singletons(ak.argmax(abs(light.eta)))] best_fwd = ak.concatenate([j_fwd, most_fwd], axis=1)[:,0:1] jf = cross(j_fwd, jet) mjf = (jf['0']+jf['1']).mass j_fwd2 = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd delta_eta = abs(j_fwd2.eta - j_fwd.eta) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) #st = met_pt + ht + ak.sum(get_pt(muon), axis=1) + ak.sum(get_pt(electron), axis=1) st = met_pt + ht + ak.sum(lepton.p4.pt, axis=1) # define the weight weight = Weights( len(ev) ) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): # lumi weight weight.add("weight", ev.weight*cfg['lumi'][self.year]) # PU weight weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) cutflow = Cutflow(output, ev, weight=weight) # slightly restructured # calculate everything from loose, require two tights on top # since n_tight == n_loose == 2, the tight and loose leptons are the same in the end # in this selection we'll get events with exactly two fakeable+tight and two loose leptons. sel = Selection( dataset = dataset, events = ev, year = self.year, ele = electron, ele_veto = el_v, mu = muon, mu_veto = mu_v, jet_all = jet, jet_central = central, jet_btag = btag, jet_fwd = fwd, jet_light = light, met = ev.MET, ) baseline = sel.dilep_baseline(cutflow=cutflow, SS=True, omit=['N_fwd>0']) baseline_OS = sel.dilep_baseline(cutflow=cutflow, SS=False, omit=['N_fwd>0']) # this is for charge flip estimation if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): BL = (baseline & ((ak.num(el_t_p_cc)+ak.num(mu_t_p))==2)) # this is the MC baseline for events with two tight prompt leptons BL_incl = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2)) # this is the MC baseline for events with two tight leptons np_est_sel_mc = (baseline & \ ((((ak.num(el_t_p_cc)+ak.num(mu_t_p))==1) & ((ak.num(el_f_np)+ak.num(mu_f_np))==1)) | (((ak.num(el_t_p_cc)+ak.num(mu_t_p))==0) & ((ak.num(el_f_np)+ak.num(mu_f_np))==2)) )) # no overlap between tight and nonprompt, and veto on additional leptons. this should be enough np_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_np)+ak.num(mu_t_np))>=1) ) # two tight leptons, at least one nonprompt np_est_sel_data = (baseline & ~baseline) # this has to be false cf_est_sel_mc = (baseline_OS & ((ak.num(el_t_p)+ak.num(mu_t_p))==2)) cf_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_p_cf))>=1) ) # two tight leptons, at least one electron charge flip cf_est_sel_data = (baseline & ~baseline) # this has to be false weight_np_mc = self.nonpromptWeight.get(el_f_np, mu_f_np, meas='TT') weight_cf_mc = self.chargeflipWeight.flip_weight(el_t_p) else: BL = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2)) BL_incl = BL np_est_sel_mc = (baseline & ~baseline) np_obs_sel_mc = (baseline & ~baseline) np_est_sel_data = (baseline & (ak.num(el_t)+ak.num(mu_t)==1) & (ak.num(el_f)+ak.num(mu_f)==1) ) cf_est_sel_mc = (baseline & ~baseline) cf_obs_sel_mc = (baseline & ~baseline) cf_est_sel_data = (baseline_OS & ((ak.num(el_t)+ak.num(mu_t))==2) ) weight_np_mc = np.zeros(len(ev)) weight_cf_mc = np.zeros(len(ev)) #rle = ak.to_numpy(ak.zip([ev.run, ev.luminosityBlock, ev.event])) run_ = ak.to_numpy(ev.run) lumi_ = ak.to_numpy(ev.luminosityBlock) event_ = ak.to_numpy(ev.event) if False: output['%s_run'%dataset] += processor.column_accumulator(run_[BL]) output['%s_lumi'%dataset] += processor.column_accumulator(lumi_[BL]) output['%s_event'%dataset] += processor.column_accumulator(event_[BL]) weight_BL = weight.weight()[BL] # this is just a shortened weight list for the two prompt selection weight_np_data = self.nonpromptWeight.get(el_f, mu_f, meas='data') weight_cf_data = self.chargeflipWeight.flip_weight(el_t) out_sel = (BL | np_est_sel_mc | cf_est_sel_mc) dummy = (np.ones(len(ev))==1) def fill_multiple_np(hist, arrays, add_sel=dummy): #reg_sel = [BL, np_est_sel_mc, np_obs_sel_mc, np_est_sel_data, cf_est_sel_mc, cf_obs_sel_mc, cf_est_sel_data], #print ('len', len(reg_sel[0])) #print ('sel', reg_sel[0]) reg_sel = [BL&add_sel, BL_incl&add_sel, np_est_sel_mc&add_sel, np_obs_sel_mc&add_sel, np_est_sel_data&add_sel, cf_est_sel_mc&add_sel, cf_obs_sel_mc&add_sel, cf_est_sel_data&add_sel], fill_multiple( hist, datasets=[ dataset, # only prompt contribution from process dataset+"_incl", # everything from process (inclusive MC truth) "np_est_mc", # MC based NP estimate "np_obs_mc", # MC based NP observation "np_est_data", "cf_est_mc", "cf_obs_mc", "cf_est_data", ], arrays=arrays, selections=reg_sel[0], # no idea where the additional dimension is coming from... weights=[ weight.weight()[reg_sel[0][0]], weight.weight()[reg_sel[0][1]], weight.weight()[reg_sel[0][2]]*weight_np_mc[reg_sel[0][2]], weight.weight()[reg_sel[0][3]], weight.weight()[reg_sel[0][4]]*weight_np_data[reg_sel[0][4]], weight.weight()[reg_sel[0][5]]*weight_cf_mc[reg_sel[0][5]], weight.weight()[reg_sel[0][6]], weight.weight()[reg_sel[0][7]]*weight_cf_data[reg_sel[0][7]], ], ) if self.evaluate or self.dump: # define the inputs to the NN # this is super stupid. there must be a better way. # used a np.stack which is ok performance wise. pandas data frame seems to be slow and memory inefficient #FIXME no n_b, n_fwd back in v13/v14 of the DNN NN_inputs_d = { 'n_jet': ak.to_numpy(ak.num(jet)), 'n_fwd': ak.to_numpy(ak.num(fwd)), 'n_b': ak.to_numpy(ak.num(btag)), 'n_tau': ak.to_numpy(ak.num(tau)), #'n_track': ak.to_numpy(ak.num(track)), 'st': ak.to_numpy(st), 'met': ak.to_numpy(ev.MET.pt), 'mjj_max': ak.to_numpy(ak.fill_none(ak.max(mjf, axis=1),0)), 'delta_eta_jj': ak.to_numpy(pad_and_flatten(delta_eta)), 'lead_lep_pt': ak.to_numpy(pad_and_flatten(leading_lepton.p4.pt)), 'lead_lep_eta': ak.to_numpy(pad_and_flatten(leading_lepton.p4.eta)), 'sublead_lep_pt': ak.to_numpy(pad_and_flatten(trailing_lepton.p4.pt)), 'sublead_lep_eta': ak.to_numpy(pad_and_flatten(trailing_lepton.p4.eta)), 'dilepton_mass': ak.to_numpy(pad_and_flatten(dilepton_mass)), 'dilepton_pt': ak.to_numpy(pad_and_flatten(dilepton_pt)), 'fwd_jet_pt': ak.to_numpy(pad_and_flatten(best_fwd.pt)), 'fwd_jet_p': ak.to_numpy(pad_and_flatten(best_fwd.p)), 'fwd_jet_eta': ak.to_numpy(pad_and_flatten(best_fwd.eta)), 'lead_jet_pt': ak.to_numpy(pad_and_flatten(jet[:, 0:1].pt)), 'sublead_jet_pt': ak.to_numpy(pad_and_flatten(jet[:, 1:2].pt)), 'lead_jet_eta': ak.to_numpy(pad_and_flatten(jet[:, 0:1].eta)), 'sublead_jet_eta': ak.to_numpy(pad_and_flatten(jet[:, 1:2].eta)), 'lead_btag_pt': ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].pt)), 'sublead_btag_pt': ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].pt)), 'lead_btag_eta': ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].eta)), 'sublead_btag_eta': ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].eta)), 'min_bl_dR': ak.to_numpy(ak.fill_none(min_bl_dR, 0)), 'min_mt_lep_met': ak.to_numpy(ak.fill_none(min_mt_lep_met, 0)), } if self.dump: for k in NN_inputs_d.keys(): output[k] += processor.column_accumulator(NN_inputs_d[k][out_sel]) if self.evaluate: NN_inputs = np.stack( [NN_inputs_d[k] for k in NN_inputs_d.keys()] ) NN_inputs = np.nan_to_num(NN_inputs, 0, posinf=1e5, neginf=-1e5) # events with posinf/neginf/nan will not pass the BL selection anyway NN_inputs = np.moveaxis(NN_inputs, 0, 1) # this is needed for a np.stack (old version) model, scaler = load_onnx_model(self.training) try: NN_inputs_scaled = scaler.transform(NN_inputs) NN_pred = predict_onnx(model, NN_inputs_scaled) best_score = np.argmax(NN_pred, axis=1) except ValueError: print ("Problem with prediction. Showing the shapes here:") print (np.shape(NN_inputs)) print (np.shape(weight_BL)) NN_pred = np.array([]) best_score = np.array([]) NN_inputs_scaled = NN_inputs raise ##k.clear_session() #FIXME below needs to be fixed again with changed NN evaluation. Should work now fill_multiple_np(output['node'], {'multiplicity':best_score}) fill_multiple_np(output['node0_score_incl'], {'score':NN_pred[:,0]}) fill_multiple_np(output['node1_score_incl'], {'score':NN_pred[:,1]}) fill_multiple_np(output['node2_score_incl'], {'score':NN_pred[:,2]}) fill_multiple_np(output['node3_score_incl'], {'score':NN_pred[:,3]}) fill_multiple_np(output['node4_score_incl'], {'score':NN_pred[:,4]}) fill_multiple_np(output['node0_score'], {'score':NN_pred[:,0]}, add_sel=(best_score==0)) fill_multiple_np(output['node1_score'], {'score':NN_pred[:,1]}, add_sel=(best_score==1)) fill_multiple_np(output['node2_score'], {'score':NN_pred[:,2]}, add_sel=(best_score==2)) fill_multiple_np(output['node3_score'], {'score':NN_pred[:,3]}, add_sel=(best_score==3)) fill_multiple_np(output['node4_score'], {'score':NN_pred[:,4]}, add_sel=(best_score==4)) #SR_sel_pp = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId<0))) #SR_sel_mm = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId>0))) #leading_lepton_BL = leading_lepton[BL] #output['lead_lep_SR_pp'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_pp].pt)), # weight = weight_BL[SR_sel_pp] #) #output['lead_lep_SR_mm'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_mm].pt)), # weight = weight_BL[SR_sel_mm] #) del model del scaler del NN_inputs, NN_inputs_scaled, NN_pred labels = {'topW_v3': 0, 'TTW':1, 'TTZ': 2, 'TTH': 3, 'ttbar': 4, 'rare':5, 'diboson':6} # these should be all? if dataset in labels: label_mult = labels[dataset] else: label_mult = 7 # data or anything else if self.dump: output['label'] += processor.column_accumulator(np.ones(len(ev[out_sel])) * label_mult) output['SS'] += processor.column_accumulator(ak.to_numpy(BL[out_sel])) output['OS'] += processor.column_accumulator(ak.to_numpy(cf_est_sel_mc[out_sel])) output['AR'] += processor.column_accumulator(ak.to_numpy(np_est_sel_mc[out_sel])) output['LL'] += processor.column_accumulator(ak.to_numpy(LL[out_sel])) output['weight'] += processor.column_accumulator(ak.to_numpy(weight.weight()[out_sel])) output['weight_np'] += processor.column_accumulator(ak.to_numpy(weight_np_mc[out_sel])) output['weight_cf'] += processor.column_accumulator(ak.to_numpy(weight_cf_mc[out_sel])) # first, make a few super inclusive plots output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight_BL) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight_BL) fill_multiple_np(output['N_jet'], {'multiplicity': ak.num(jet)}) fill_multiple_np(output['N_b'], {'multiplicity': ak.num(btag)}) fill_multiple_np(output['N_central'], {'multiplicity': ak.num(central)}) fill_multiple_np(output['N_ele'], {'multiplicity':ak.num(electron)}) fill_multiple_np(output['N_mu'], {'multiplicity':ak.num(muon)}) fill_multiple_np(output['N_fwd'], {'multiplicity':ak.num(fwd)}) fill_multiple_np(output['ST'], {'ht': st}) fill_multiple_np(output['HT'], {'ht': ht}) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight_BL) output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight_BL) output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight_BL) output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight_BL) output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight_BL) output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight_BL) output['chargeFlip_vs_nonprompt'].fill(dataset=dataset, n1=n_chargeflip[BL], n2=n_nonprompt[BL], n_ele=ak.num(electron)[BL], weight=weight_BL) fill_multiple_np(output['MET'], {'pt':ev.MET.pt, 'phi':ev.MET.phi}) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['lead_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)), weight = weight_BL ) output['trail_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)), weight = weight_BL ) fill_multiple_np( output['lead_lep'], { 'pt': pad_and_flatten(leading_lepton.p4.pt), 'eta': pad_and_flatten(leading_lepton.eta), 'phi': pad_and_flatten(leading_lepton.phi), }, ) fill_multiple_np( output['trail_lep'], { 'pt': pad_and_flatten(trailing_lepton.p4.pt), 'eta': pad_and_flatten(trailing_lepton.eta), 'phi': pad_and_flatten(trailing_lepton.phi), }, ) output['j1'].fill( dataset = dataset, pt = ak.flatten(jet.pt_nom[:, 0:1][BL]), eta = ak.flatten(jet.eta[:, 0:1][BL]), phi = ak.flatten(jet.phi[:, 0:1][BL]), weight = weight_BL ) output['j2'].fill( dataset = dataset, pt = ak.flatten(jet[:, 1:2][BL].pt_nom), eta = ak.flatten(jet[:, 1:2][BL].eta), phi = ak.flatten(jet[:, 1:2][BL].phi), weight = weight_BL ) output['j3'].fill( dataset = dataset, pt = ak.flatten(jet[:, 2:3][BL].pt_nom), eta = ak.flatten(jet[:, 2:3][BL].eta), phi = ak.flatten(jet[:, 2:3][BL].phi), weight = weight_BL ) fill_multiple_np( output['fwd_jet'], { 'pt': pad_and_flatten(best_fwd.pt), 'eta': pad_and_flatten(best_fwd.eta), 'phi': pad_and_flatten(best_fwd.phi), }, ) #output['fwd_jet'].fill( # dataset = dataset, # pt = ak.flatten(j_fwd[BL].pt), # eta = ak.flatten(j_fwd[BL].eta), # phi = ak.flatten(j_fwd[BL].phi), # weight = weight_BL #) output['high_p_fwd_p'].fill(dataset=dataset, p = ak.flatten(best_fwd[BL].p), weight = weight_BL) return output