Exemplo n.º 1
0
def SS_selection(lep1, lep2):
    selection = PackedSelection()

    is_dilep   = ((ak.num(lep1) + ak.num(lep2))==2)
    pos_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))<0)
    neg_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))>0)

    dilep2    = choose(lep2, 2)
    dilep1   = choose(lep1, 2)
    dilep   = cross(lep2, lep1)

    is_SS = ( ak.any((dilep2['0'].charge * dilep2['1'].charge)>0, axis=1) | \
              ak.any((dilep1['0'].charge * dilep1['1'].charge)>0, axis=1) | \
              ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) )

    selection.add('SS', is_SS)
    ss_reqs = ['SS']

    ss_reqs_d = {sel: True for sel in ss_reqs}
    ss_selection = selection.require(**ss_reqs_d)
    return ss_selection
Exemplo n.º 2
0
    def dilep_baseline(self, omit=[], cutflow=None, tight=False, SS=True):
        '''
        give it a cutflow object if you want it to be filed.
        cuts in the omit list will not be applied
        '''
        self.selection = PackedSelection()

        is_dilep   = ((ak.num(self.ele) + ak.num(self.mu))==2)
        pos_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))<0)
        neg_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))>0)
        lep0pt     = ((ak.num(self.ele[(self.ele.pt>25)]) + ak.num(self.mu[(self.mu.pt>25)]))>0)
        lep1pt     = ((ak.num(self.ele[(self.ele.pt>20)]) + ak.num(self.mu[(self.mu.pt>20)]))>1)
        lepveto    = ((ak.num(self.ele_veto) + ak.num(self.mu_veto))==2)

        dimu    = choose(self.mu, 2)
        diele   = choose(self.ele, 2)
        dilep   = cross(self.mu, self.ele)

        if SS:
            is_SS = ( ak.any((dimu['0'].charge * dimu['1'].charge)>0, axis=1) | \
                      ak.any((diele['0'].charge * diele['1'].charge)>0, axis=1) | \
                      ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) )
        else:
            is_OS = ( ak.any((dimu['0'].charge * dimu['1'].charge)<0, axis=1) | \
                      ak.any((diele['0'].charge * diele['1'].charge)<0, axis=1) | \
                      ak.any((dilep['0'].charge * dilep['1'].charge)<0, axis=1) )

        lepton = ak.concatenate([self.ele, self.mu], axis=1)
        lepton_pdgId_pt_ordered = ak.fill_none(
            ak.pad_none(
                lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True),
        0)

        triggers  = getTriggers(self.events,
            ak.flatten(lepton_pdgId_pt_ordered[:,0:1]),
            ak.flatten(lepton_pdgId_pt_ordered[:,1:2]), year=self.year, dataset=self.dataset)

        ht = ak.sum(self.jet_all.pt, axis=1)
        st = self.met.pt + ht + ak.sum(self.mu.pt, axis=1) + ak.sum(self.ele.pt, axis=1)

        self.selection.add('lepveto',       lepveto)
        self.selection.add('dilep',         is_dilep)
        #self.selection.add('filter',        self.filters)
        self.selection.add('trigger',       triggers)
        self.selection.add('p_T(lep0)>25',  lep0pt)
        self.selection.add('p_T(lep1)>20',  lep1pt)
        if SS:
            self.selection.add('SS',            is_SS )
        else:
            self.selection.add('OS',            is_OS )
        self.selection.add('N_jet>3',       (ak.num(self.jet_all)>3) )
        self.selection.add('N_jet>4',       (ak.num(self.jet_all)>4) )
        self.selection.add('N_central>2',   (ak.num(self.jet_central)>2) )
        self.selection.add('N_central>3',   (ak.num(self.jet_central)>3) )
        self.selection.add('N_btag>0',      (ak.num(self.jet_btag)>0) )
        self.selection.add('N_fwd>0',       (ak.num(self.jet_fwd)>0) )
        self.selection.add('MET>30',        (self.met.pt>30) )
        self.selection.add('MET>50',        (self.met.pt>50) )
        self.selection.add('ST>600',        (st>600) )

        ss_reqs = [
        #    'filter',
            'lepveto',
            'dilep',
            'p_T(lep0)>25',
            'p_T(lep1)>20',
            'trigger',
            'SS' if SS else 'OS',
            'N_jet>3',
            'N_central>2',
            'N_btag>0',
            'MET>30',
            'N_fwd>0',
        ]
        
        if tight:
            ss_reqs += [
                'N_jet>4',
                'N_central>3',
                'ST>600',
                'MET>50',
                #'delta_eta',
            ]

        ss_reqs_d = { sel: True for sel in ss_reqs if not sel in omit }
        ss_selection = self.selection.require(**ss_reqs_d)

        if cutflow:
            #
            cutflow_reqs_d = {}
            for req in ss_reqs:
                cutflow_reqs_d.update({req: True})
                cutflow.addRow( req, self.selection.require(**cutflow_reqs_d) )

        return ss_selection
Exemplo n.º 3
0
    def process(self, events):
        
        output = self.accumulator.identity()
        
        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet)>2
        
        ev = events[presel]
        dataset = ev.metadata['dataset']
        
        # load the config - probably not needed anymore
        cfg = loadConfig()
        
        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)
        
        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            ## Generated leptons
            gen_lep = ev.GenL
            leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))]
            trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))]

        # Get the leptons. This has changed a couple of times now, but we are using fakeable objects as baseline leptons.
        # The added p4 instance has the corrected pt (conePt for fakeable) and should be used for any following selection or calculation
        # Any additional correction (if we choose to do so) should be added here, e.g. Rochester corrections, ...
        ## Muons
        mu_v     = Collections(ev, "Muon", "vetoTTH", year=year).get()  # these include all muons, tight and fakeable
        mu_t     = Collections(ev, "Muon", "tightSSTTH", year=year).get()
        mu_f     = Collections(ev, "Muon", "fakeableSSTTH", year=year).get()
        muon     = ak.concatenate([mu_t, mu_f], axis=1)
        muon['p4'] = get_four_vec_fromPtEtaPhiM(muon, get_pt(muon), muon.eta, muon.phi, muon.mass, copy=False) #FIXME new
        
        ## Electrons
        el_v        = Collections(ev, "Electron", "vetoTTH", year=year).get()
        el_t        = Collections(ev, "Electron", "tightSSTTH", year=year).get()
        el_f        = Collections(ev, "Electron", "fakeableSSTTH", year=year).get()
        electron    = ak.concatenate([el_t, el_f], axis=1)
        electron['p4'] = get_four_vec_fromPtEtaPhiM(electron, get_pt(electron), electron.eta, electron.phi, electron.mass, copy=False) #FIXME new
        
        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            el_t_p  = prompt(el_t)
            el_t_np = nonprompt(el_t)
            el_f_p  = prompt(el_f)
            el_f_np = nonprompt(el_f)
            mu_t_p  = prompt(mu_t)
            mu_t_np = nonprompt(mu_t)
            mu_f_p  = prompt(mu_f)
            mu_f_np = nonprompt(mu_f)

            is_flipped = ( (el_t_p.matched_gen.pdgId*(-1) == el_t_p.pdgId) & (abs(el_t_p.pdgId) == 11) )
            el_t_p_cc  = el_t_p[~is_flipped]  # this is tight, prompt, and charge consistent
            el_t_p_cf  = el_t_p[is_flipped]  # this is tight, prompt, and charge flipped


        ## Merge electrons and muons. These are fakeable leptons now
        lepton   = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.p4.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.p4.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        dilepton_mass = (leading_lepton.p4 + trailing_lepton.p4).mass
        dilepton_pt = (leading_lepton.p4 + trailing_lepton.p4).pt
        #dilepton_dR = delta_r(leading_lepton, trailing_lepton)
        dilepton_dR = leading_lepton.p4.delta_r(trailing_lepton.p4)
        
        lepton_pdgId_pt_ordered = ak.fill_none(ak.pad_none(lepton[ak.argsort(lepton.p4.pt, ascending=False)].pdgId, 2, clip=True), 0)
        
        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            n_nonprompt = getNonPromptFromFlavour(electron) + getNonPromptFromFlavour(muon)
            n_chargeflip = getChargeFlips(electron, ev.GenPart) + getChargeFlips(muon, ev.GenPart)
            gp = ev.GenPart
            gp_e = gp[((abs(gp.pdgId)==11)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))]
            gp_m = gp[((abs(gp.pdgId)==13)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))]
            n_gen_lep = ak.num(gp_e) + ak.num(gp_m)
        else:
            n_gen_lep = np.zeros(len(ev))

        LL = (n_gen_lep > 2)  # this is the classifier for LL events (should mainly be ttZ/tZ/WZ...)

        mt_lep_met = mt(lepton.p4.pt, lepton.p4.phi, ev.MET.pt, ev.MET.phi)
        min_mt_lep_met = ak.min(mt_lep_met, axis=1)

        ## Tau and other stuff
        tau       = getTaus(ev)
        tau       = tau[~match(tau, muon, deltaRCut=0.4)] 
        tau       = tau[~match(tau, electron, deltaRCut=0.4)]

        track     = getIsoTracks(ev)

        ## Jets
        jet       = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet       = jet[ak.argsort(jet.pt_nom, ascending=False)] # need to sort wrt smeared and recorrected jet pt
        jet       = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons
        jet       = jet[~match(jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons
        
        central   = jet[(abs(jet.eta)<2.4)]
        btag      = getBTagsDeepFlavB(jet, year=self.year) # should study working point for DeepJet
        light     = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd       = getFwdJet(light)
        fwd_noPU  = getFwdJet(light, puId=False)
        
        high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:,:2]

        bl          = cross(lepton, high_score_btag)
        bl_dR       = delta_r(bl['0'], bl['1'])
        min_bl_dR   = ak.min(bl_dR, axis=1)

        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(fwd.p, axis=1))] # highest momentum spectator

        # try to get either the most forward light jet, or if there's more than one with eta>1.7, the highest pt one
        most_fwd = light[ak.argsort(abs(light.eta))][:,0:1]
        #most_fwd = light[ak.singletons(ak.argmax(abs(light.eta)))]
        best_fwd = ak.concatenate([j_fwd, most_fwd], axis=1)[:,0:1]
        
        jf          = cross(j_fwd, jet)
        mjf         = (jf['0']+jf['1']).mass
        j_fwd2      = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd
        delta_eta   = abs(j_fwd2.eta - j_fwd.eta)

        ## MET -> can switch to puppi MET
        met_pt  = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        #st = met_pt + ht + ak.sum(get_pt(muon), axis=1) + ak.sum(get_pt(electron), axis=1)
        st = met_pt + ht + ak.sum(lepton.p4.pt, axis=1)
        
        # define the weight
        weight = Weights( len(ev) )

        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            # lumi weight
            weight.add("weight", ev.weight*cfg['lumi'][self.year])
            
            # PU weight
            weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False)
            
            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))
            
            # lepton SFs
            weight.add("lepton", self.leptonSF.get(electron, muon))
        

        cutflow     = Cutflow(output, ev, weight=weight)

        # slightly restructured
        # calculate everything from loose, require two tights on top
        # since n_tight == n_loose == 2, the tight and loose leptons are the same in the end

        # in this selection we'll get events with exactly two fakeable+tight and two loose leptons.
        sel = Selection(
            dataset = dataset,
            events = ev,
            year = self.year,
            ele = electron,
            ele_veto = el_v,
            mu = muon,
            mu_veto = mu_v,
            jet_all = jet,
            jet_central = central,
            jet_btag = btag,
            jet_fwd = fwd,
            jet_light = light,
            met = ev.MET,
        )
        
        baseline = sel.dilep_baseline(cutflow=cutflow, SS=True, omit=['N_fwd>0'])
        baseline_OS = sel.dilep_baseline(cutflow=cutflow, SS=False, omit=['N_fwd>0'])  # this is for charge flip estimation
        
        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):

            BL = (baseline & ((ak.num(el_t_p_cc)+ak.num(mu_t_p))==2))  # this is the MC baseline for events with two tight prompt leptons
            BL_incl = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2)) # this is the MC baseline for events with two tight leptons

            np_est_sel_mc = (baseline & \
                ((((ak.num(el_t_p_cc)+ak.num(mu_t_p))==1) & ((ak.num(el_f_np)+ak.num(mu_f_np))==1)) | (((ak.num(el_t_p_cc)+ak.num(mu_t_p))==0) & ((ak.num(el_f_np)+ak.num(mu_f_np))==2)) ))  # no overlap between tight and nonprompt, and veto on additional leptons. this should be enough
            np_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_np)+ak.num(mu_t_np))>=1) )  # two tight leptons, at least one nonprompt
            np_est_sel_data = (baseline & ~baseline)  # this has to be false

            cf_est_sel_mc = (baseline_OS & ((ak.num(el_t_p)+ak.num(mu_t_p))==2))
            cf_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_p_cf))>=1) )  # two tight leptons, at least one electron charge flip
            cf_est_sel_data = (baseline & ~baseline)  # this has to be false

            weight_np_mc = self.nonpromptWeight.get(el_f_np, mu_f_np, meas='TT')
            weight_cf_mc = self.chargeflipWeight.flip_weight(el_t_p)

        else:
            BL = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2))

            BL_incl = BL

            np_est_sel_mc = (baseline & ~baseline)
            np_obs_sel_mc = (baseline & ~baseline)
            np_est_sel_data = (baseline & (ak.num(el_t)+ak.num(mu_t)==1) & (ak.num(el_f)+ak.num(mu_f)==1) )

            cf_est_sel_mc = (baseline & ~baseline)
            cf_obs_sel_mc = (baseline & ~baseline)
            cf_est_sel_data = (baseline_OS & ((ak.num(el_t)+ak.num(mu_t))==2) )

            weight_np_mc = np.zeros(len(ev))
            weight_cf_mc = np.zeros(len(ev))

            #rle = ak.to_numpy(ak.zip([ev.run, ev.luminosityBlock, ev.event]))
            run_ = ak.to_numpy(ev.run)
            lumi_ = ak.to_numpy(ev.luminosityBlock)
            event_ = ak.to_numpy(ev.event)

            if False:
                output['%s_run'%dataset] += processor.column_accumulator(run_[BL])
                output['%s_lumi'%dataset] += processor.column_accumulator(lumi_[BL])
                output['%s_event'%dataset] += processor.column_accumulator(event_[BL])

        weight_BL = weight.weight()[BL]  # this is just a shortened weight list for the two prompt selection
        weight_np_data = self.nonpromptWeight.get(el_f, mu_f, meas='data')
        weight_cf_data = self.chargeflipWeight.flip_weight(el_t)

        out_sel = (BL | np_est_sel_mc | cf_est_sel_mc)

        dummy = (np.ones(len(ev))==1)
        def fill_multiple_np(hist, arrays, add_sel=dummy):
            #reg_sel = [BL, np_est_sel_mc, np_obs_sel_mc, np_est_sel_data, cf_est_sel_mc, cf_obs_sel_mc, cf_est_sel_data],
            #print ('len', len(reg_sel[0]))
            #print ('sel', reg_sel[0])
            reg_sel = [BL&add_sel, BL_incl&add_sel, np_est_sel_mc&add_sel, np_obs_sel_mc&add_sel, np_est_sel_data&add_sel, cf_est_sel_mc&add_sel, cf_obs_sel_mc&add_sel, cf_est_sel_data&add_sel],
            fill_multiple(
                hist,
                datasets=[
                    dataset, # only prompt contribution from process
                    dataset+"_incl", # everything from process (inclusive MC truth)
                    "np_est_mc", # MC based NP estimate
                    "np_obs_mc", # MC based NP observation
                    "np_est_data",
                    "cf_est_mc",
                    "cf_obs_mc",
                    "cf_est_data",
                ],
                arrays=arrays,
                selections=reg_sel[0],  # no idea where the additional dimension is coming from...
                weights=[
                    weight.weight()[reg_sel[0][0]],
                    weight.weight()[reg_sel[0][1]],
                    weight.weight()[reg_sel[0][2]]*weight_np_mc[reg_sel[0][2]],
                    weight.weight()[reg_sel[0][3]],
                    weight.weight()[reg_sel[0][4]]*weight_np_data[reg_sel[0][4]],
                    weight.weight()[reg_sel[0][5]]*weight_cf_mc[reg_sel[0][5]],
                    weight.weight()[reg_sel[0][6]],
                    weight.weight()[reg_sel[0][7]]*weight_cf_data[reg_sel[0][7]],
                ],
            )

        if self.evaluate or self.dump:
            # define the inputs to the NN
            # this is super stupid. there must be a better way.
            # used a np.stack which is ok performance wise. pandas data frame seems to be slow and memory inefficient
            #FIXME no n_b, n_fwd back in v13/v14 of the DNN

            NN_inputs_d = {
                'n_jet':            ak.to_numpy(ak.num(jet)),
                'n_fwd':            ak.to_numpy(ak.num(fwd)),
                'n_b':              ak.to_numpy(ak.num(btag)),
                'n_tau':            ak.to_numpy(ak.num(tau)),
                #'n_track':          ak.to_numpy(ak.num(track)),
                'st':               ak.to_numpy(st),
                'met':              ak.to_numpy(ev.MET.pt),
                'mjj_max':          ak.to_numpy(ak.fill_none(ak.max(mjf, axis=1),0)),
                'delta_eta_jj':     ak.to_numpy(pad_and_flatten(delta_eta)),
                'lead_lep_pt':      ak.to_numpy(pad_and_flatten(leading_lepton.p4.pt)),
                'lead_lep_eta':     ak.to_numpy(pad_and_flatten(leading_lepton.p4.eta)),
                'sublead_lep_pt':   ak.to_numpy(pad_and_flatten(trailing_lepton.p4.pt)),
                'sublead_lep_eta':  ak.to_numpy(pad_and_flatten(trailing_lepton.p4.eta)),
                'dilepton_mass':    ak.to_numpy(pad_and_flatten(dilepton_mass)),
                'dilepton_pt':      ak.to_numpy(pad_and_flatten(dilepton_pt)),
                'fwd_jet_pt':       ak.to_numpy(pad_and_flatten(best_fwd.pt)),
                'fwd_jet_p':        ak.to_numpy(pad_and_flatten(best_fwd.p)),
                'fwd_jet_eta':      ak.to_numpy(pad_and_flatten(best_fwd.eta)),
                'lead_jet_pt':      ak.to_numpy(pad_and_flatten(jet[:, 0:1].pt)),
                'sublead_jet_pt':   ak.to_numpy(pad_and_flatten(jet[:, 1:2].pt)),
                'lead_jet_eta':     ak.to_numpy(pad_and_flatten(jet[:, 0:1].eta)),
                'sublead_jet_eta':  ak.to_numpy(pad_and_flatten(jet[:, 1:2].eta)),
                'lead_btag_pt':     ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].pt)),
                'sublead_btag_pt':  ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].pt)),
                'lead_btag_eta':    ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].eta)),
                'sublead_btag_eta': ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].eta)),
                'min_bl_dR':        ak.to_numpy(ak.fill_none(min_bl_dR, 0)),
                'min_mt_lep_met':   ak.to_numpy(ak.fill_none(min_mt_lep_met, 0)),
            }

            if self.dump:
                for k in NN_inputs_d.keys():
                    output[k] += processor.column_accumulator(NN_inputs_d[k][out_sel])

            if self.evaluate:
            
                NN_inputs = np.stack( [NN_inputs_d[k] for k in NN_inputs_d.keys()] )

                NN_inputs = np.nan_to_num(NN_inputs, 0, posinf=1e5, neginf=-1e5)  # events with posinf/neginf/nan will not pass the BL selection anyway

                NN_inputs = np.moveaxis(NN_inputs, 0, 1)  # this is needed for a np.stack (old version)

                model, scaler = load_onnx_model(self.training)

                try:
                    NN_inputs_scaled = scaler.transform(NN_inputs)

                    NN_pred    = predict_onnx(model, NN_inputs_scaled)

                    best_score = np.argmax(NN_pred, axis=1)


                except ValueError:
                    print ("Problem with prediction. Showing the shapes here:")
                    print (np.shape(NN_inputs))
                    print (np.shape(weight_BL))
                    NN_pred = np.array([])
                    best_score = np.array([])
                    NN_inputs_scaled = NN_inputs
                    raise

                ##k.clear_session()

                #FIXME below needs to be fixed again with changed NN evaluation. Should work now

                fill_multiple_np(output['node'], {'multiplicity':best_score})
                fill_multiple_np(output['node0_score_incl'], {'score':NN_pred[:,0]})
                fill_multiple_np(output['node1_score_incl'], {'score':NN_pred[:,1]})
                fill_multiple_np(output['node2_score_incl'], {'score':NN_pred[:,2]})
                fill_multiple_np(output['node3_score_incl'], {'score':NN_pred[:,3]})
                fill_multiple_np(output['node4_score_incl'], {'score':NN_pred[:,4]})
                
                fill_multiple_np(output['node0_score'], {'score':NN_pred[:,0]}, add_sel=(best_score==0))
                fill_multiple_np(output['node1_score'], {'score':NN_pred[:,1]}, add_sel=(best_score==1))
                fill_multiple_np(output['node2_score'], {'score':NN_pred[:,2]}, add_sel=(best_score==2))
                fill_multiple_np(output['node3_score'], {'score':NN_pred[:,3]}, add_sel=(best_score==3))
                fill_multiple_np(output['node4_score'], {'score':NN_pred[:,4]}, add_sel=(best_score==4))

                #SR_sel_pp = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId<0)))
                #SR_sel_mm = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId>0)))
                #leading_lepton_BL = leading_lepton[BL]

                #output['lead_lep_SR_pp'].fill(
                #    dataset = dataset,
                #    pt  = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_pp].pt)),
                #    weight = weight_BL[SR_sel_pp]
                #)

                #output['lead_lep_SR_mm'].fill(
                #    dataset = dataset,
                #    pt  = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_mm].pt)),
                #    weight = weight_BL[SR_sel_mm]
                #)

                del model
                del scaler
                del NN_inputs, NN_inputs_scaled, NN_pred

        labels = {'topW_v3': 0, 'TTW':1, 'TTZ': 2, 'TTH': 3, 'ttbar': 4, 'rare':5, 'diboson':6}  # these should be all?
        if dataset in labels:
            label_mult = labels[dataset]
        else:
            label_mult = 7  # data or anything else

        if self.dump:
            output['label']     += processor.column_accumulator(np.ones(len(ev[out_sel])) * label_mult)
            output['SS']        += processor.column_accumulator(ak.to_numpy(BL[out_sel]))
            output['OS']        += processor.column_accumulator(ak.to_numpy(cf_est_sel_mc[out_sel]))
            output['AR']        += processor.column_accumulator(ak.to_numpy(np_est_sel_mc[out_sel]))
            output['LL']        += processor.column_accumulator(ak.to_numpy(LL[out_sel]))
            output['weight']    += processor.column_accumulator(ak.to_numpy(weight.weight()[out_sel]))
            output['weight_np'] += processor.column_accumulator(ak.to_numpy(weight_np_mc[out_sel]))
            output['weight_cf'] += processor.column_accumulator(ak.to_numpy(weight_cf_mc[out_sel]))

        # first, make a few super inclusive plots
        output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight_BL)
        output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight_BL)
        fill_multiple_np(output['N_jet'],     {'multiplicity': ak.num(jet)})
        fill_multiple_np(output['N_b'],       {'multiplicity': ak.num(btag)})
        fill_multiple_np(output['N_central'], {'multiplicity': ak.num(central)})
        fill_multiple_np(output['N_ele'],     {'multiplicity':ak.num(electron)})
        fill_multiple_np(output['N_mu'],      {'multiplicity':ak.num(muon)})
        fill_multiple_np(output['N_fwd'],     {'multiplicity':ak.num(fwd)})
        fill_multiple_np(output['ST'],        {'ht': st})
        fill_multiple_np(output['HT'],        {'ht': ht})

        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight_BL)
            output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight_BL)
            output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight_BL)
            output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight_BL)
            output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight_BL)
            output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight_BL)
            output['chargeFlip_vs_nonprompt'].fill(dataset=dataset, n1=n_chargeflip[BL], n2=n_nonprompt[BL], n_ele=ak.num(electron)[BL], weight=weight_BL)

        fill_multiple_np(output['MET'], {'pt':ev.MET.pt, 'phi':ev.MET.phi})

        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset):
            output['lead_gen_lep'].fill(
                dataset = dataset,
                pt  = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)),
                eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)),
                phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)),
                weight = weight_BL
            )

            output['trail_gen_lep'].fill(
                dataset = dataset,
                pt  = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)),
                eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)),
                phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)),
                weight = weight_BL
            )
        
        fill_multiple_np(
            output['lead_lep'],
            {
                'pt':  pad_and_flatten(leading_lepton.p4.pt),
                'eta': pad_and_flatten(leading_lepton.eta),
                'phi': pad_and_flatten(leading_lepton.phi),
            },
        )

        fill_multiple_np(
            output['trail_lep'],
            {
                'pt':  pad_and_flatten(trailing_lepton.p4.pt),
                'eta': pad_and_flatten(trailing_lepton.eta),
                'phi': pad_and_flatten(trailing_lepton.phi),
            },
        )
        
        output['j1'].fill(
            dataset = dataset,
            pt  = ak.flatten(jet.pt_nom[:, 0:1][BL]),
            eta = ak.flatten(jet.eta[:, 0:1][BL]),
            phi = ak.flatten(jet.phi[:, 0:1][BL]),
            weight = weight_BL
        )
        
        output['j2'].fill(
            dataset = dataset,
            pt  = ak.flatten(jet[:, 1:2][BL].pt_nom),
            eta = ak.flatten(jet[:, 1:2][BL].eta),
            phi = ak.flatten(jet[:, 1:2][BL].phi),
            weight = weight_BL
        )
        
        output['j3'].fill(
            dataset = dataset,
            pt  = ak.flatten(jet[:, 2:3][BL].pt_nom),
            eta = ak.flatten(jet[:, 2:3][BL].eta),
            phi = ak.flatten(jet[:, 2:3][BL].phi),
            weight = weight_BL
        )
        
        fill_multiple_np(
            output['fwd_jet'],
            {
                'pt':  pad_and_flatten(best_fwd.pt),
                'eta': pad_and_flatten(best_fwd.eta),
                'phi': pad_and_flatten(best_fwd.phi),
            },
        )
        
        #output['fwd_jet'].fill(
        #    dataset = dataset,
        #    pt  = ak.flatten(j_fwd[BL].pt),
        #    eta = ak.flatten(j_fwd[BL].eta),
        #    phi = ak.flatten(j_fwd[BL].phi),
        #    weight = weight_BL
        #)
            
        output['high_p_fwd_p'].fill(dataset=dataset, p = ak.flatten(best_fwd[BL].p), weight = weight_BL)
        
        return output