filt,
                                           tau,
                                           nbclust,
                                           sigma,
                                           homeinv,
                                           jitter,
                                           timestr,
                                           dataset,
                                           R,
                                           ds_ev=ds_ev_output)
 print(f'LR fit for {name}...')
 model, loss = fit_data(name_net,
                        learn_set,
                        nb_train,
                        nb_pola,
                        learning_rate,
                        num_epochs,
                        betas,
                        num_workers=num_workers,
                        verbose=True)
 print(f'get testing set for {name}...')
 test_set, nb_pola, name_net = get_loader(name,
                                          record_path,
                                          nb_test,
                                          False,
                                          filt,
                                          tau,
                                          nbclust,
                                          sigma,
                                          homeinv,
                                          jitter,
nb_train = 36
nb_test = 40
jitonic = None
tau_cla = 50000
namelist = ['raw', 'homhots']

namelist = ['raw', 'hots', 'homhots']

for name in namelist:
    f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_36_40_{ds_ev}.pkl'
    if os.path.isfile(f_name):
        with open(f_name, 'rb') as file:
            likelihood, true_target, time_scale = pickle.load(file)
    else:
        print(f'LR fit for {name}...')
        model, loss  = fit_data(name,timestr,record_path,filt,tau,R,nbclust,sigma,homeinv,jitter,dataset,nb_train, ds_ev,learning_rate,num_epochs,betas,tau_cla,jitonic=jitonic,num_workers=num_workers,verbose=False)
        print(f'prediction for {name}...')
        likelihood, true_target, time_scale = predict_data(model,name,timestr,record_path,filt,tau,R,nbclust,sigma, homeinv, jitter,dataset,nb_test,ds_ev,tau_cla,jitonic=jitonic,num_workers=num_workers, verbose=False)
        with open(f_name, 'wb') as file:
            pickle.dump([likelihood, true_target, time_scale], file, pickle.HIGHEST_PROTOCOL)


timesteps = np.arange(500,100000,100)
nb_classes = 10

results = [timesteps]

for namnum, name in enumerate(namelist):
    f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_{nb_train}_{nb_test}_{ds_ev}_timescale.pkl'
    with open(f_name, 'rb') as file:
        likelihood, true_target, time_scale = pickle.load(file)
     with open(f_name, 'rb') as file:
         likelihood, true_target, time_scale = pickle.load(file)
 else:
     ds_ev = ds_ev_train
     print(f'LR fit for {name}...')
     model, loss = fit_data(name,
                            timestr,
                            path,
                            filt,
                            tau,
                            R,
                            nbclust,
                            sigma,
                            homeinv,
                            jitter,
                            dataset,
                            nb_train,
                            ds_ev,
                            learning_rate,
                            num_epochs,
                            betas,
                            tau_cla,
                            sample_space=sample_space,
                            jitonic=jitonic,
                            subset_size=nb_train,
                            num_workers=num_workers,
                            verbose=False)
     ds_ev = ds_ev_test
     print(f'prediction for {name}...')
     likelihood, true_target, time_scale = predict_data(
         model,
         name,