filt, tau, nbclust, sigma, homeinv, jitter, timestr, dataset, R, ds_ev=ds_ev_output) print(f'LR fit for {name}...') model, loss = fit_data(name_net, learn_set, nb_train, nb_pola, learning_rate, num_epochs, betas, num_workers=num_workers, verbose=True) print(f'get testing set for {name}...') test_set, nb_pola, name_net = get_loader(name, record_path, nb_test, False, filt, tau, nbclust, sigma, homeinv, jitter,
nb_train = 36 nb_test = 40 jitonic = None tau_cla = 50000 namelist = ['raw', 'homhots'] namelist = ['raw', 'hots', 'homhots'] for name in namelist: f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_36_40_{ds_ev}.pkl' if os.path.isfile(f_name): with open(f_name, 'rb') as file: likelihood, true_target, time_scale = pickle.load(file) else: print(f'LR fit for {name}...') model, loss = fit_data(name,timestr,record_path,filt,tau,R,nbclust,sigma,homeinv,jitter,dataset,nb_train, ds_ev,learning_rate,num_epochs,betas,tau_cla,jitonic=jitonic,num_workers=num_workers,verbose=False) print(f'prediction for {name}...') likelihood, true_target, time_scale = predict_data(model,name,timestr,record_path,filt,tau,R,nbclust,sigma, homeinv, jitter,dataset,nb_test,ds_ev,tau_cla,jitonic=jitonic,num_workers=num_workers, verbose=False) with open(f_name, 'wb') as file: pickle.dump([likelihood, true_target, time_scale], file, pickle.HIGHEST_PROTOCOL) timesteps = np.arange(500,100000,100) nb_classes = 10 results = [timesteps] for namnum, name in enumerate(namelist): f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_{nb_train}_{nb_test}_{ds_ev}_timescale.pkl' with open(f_name, 'rb') as file: likelihood, true_target, time_scale = pickle.load(file)
with open(f_name, 'rb') as file: likelihood, true_target, time_scale = pickle.load(file) else: ds_ev = ds_ev_train print(f'LR fit for {name}...') model, loss = fit_data(name, timestr, path, filt, tau, R, nbclust, sigma, homeinv, jitter, dataset, nb_train, ds_ev, learning_rate, num_epochs, betas, tau_cla, sample_space=sample_space, jitonic=jitonic, subset_size=nb_train, num_workers=num_workers, verbose=False) ds_ev = ds_ev_test print(f'prediction for {name}...') likelihood, true_target, time_scale = predict_data( model, name,