Exemplo n.º 1
0
def main():
    # ======================================================================================================================
    # ============================================= Initialize parameters  =================================================
    # ======================================================================================================================
    N = 14                                    # Horizon length
    n = 6;   d = 2                            # State and Input dimension
    x0 = np.array([0.5, 0, 0, 0, 0, 0])       # Initial condition
    xS = [x0, x0]
    dt = 0.1

    map = Map(0.4)                            # Initialize map
    vt = 0.8                                  # target vevlocity

    # Initialize controller parameters
    mpcParam, ltvmpcParam = initMPCParams(n, d, N, vt)
    numSS_it, numSS_Points, Laps, TimeLMPC, QterminalSlack, lmpcParameters = initLMPCParams(map, N)

    # Init simulators
    simulator     = Simulator(map)
    LMPCsimulator = Simulator(map, multiLap = False, flagLMPC = True)

    # ======================================================================================================================
    # ======================================= PID path following ===========================================================
    # ======================================================================================================================
    print("Starting PID")
    # Initialize pid and run sim
    PIDController = PID(vt)
    xPID_cl, uPID_cl, xPID_cl_glob, _ = simulator.sim(xS, PIDController)
    print("===== PID terminated")

    # ======================================================================================================================
    # ======================================  LINEAR REGRESSION ============================================================
    # ======================================================================================================================
    print("Starting MPC")
    # Estimate system dynamics
    lamb = 0.0000001
    A, B, Error = Regression(xPID_cl, uPID_cl, lamb)
    mpcParam.A = A
    mpcParam.B = B
    # Initialize MPC and run closed-loop sim
    mpc = MPC(mpcParam)
    xMPC_cl, uMPC_cl, xMPC_cl_glob, _ = simulator.sim(xS, mpc)
    print("===== MPC terminated")

    # ======================================================================================================================
    # ===================================  LOCAL LINEAR REGRESSION =========================================================
    # ======================================================================================================================
    print("Starting TV-MPC")
    # Initialized predictive model
    predictiveModel = PredictiveModel(n, d, map, 1)
    predictiveModel.addTrajectory(xPID_cl,uPID_cl)
    #Initialize TV-MPC
    ltvmpcParam.timeVarying = True 
    mpc = MPC(ltvmpcParam, predictiveModel)
    # Run closed-loop sim
    xTVMPC_cl, uTVMPC_cl, xTVMPC_cl_glob, _ = simulator.sim(xS, mpc)
    print("===== TV-MPC terminated")

    # ======================================================================================================================
    # ==============================  LMPC w\ LOCAL LINEAR REGRESSION ======================================================
    # ======================================================================================================================
    print("Starting LMPC")
    # Initialize Predictive Model for lmpc
    lmpcpredictiveModel = PredictiveModel(n, d, map, 4)
    for i in range(0,4): # add trajectories used for model learning
        lmpcpredictiveModel.addTrajectory(xPID_cl,uPID_cl)

    # Initialize Controller
    lmpcParameters.timeVarying     = True 
    lmpc = LMPC(numSS_Points, numSS_it, QterminalSlack, lmpcParameters, lmpcpredictiveModel)
    for i in range(0,4): # add trajectories for safe set
        lmpc.addTrajectory( xPID_cl, uPID_cl, xPID_cl_glob)
    
    # Run sevaral laps
    for it in range(numSS_it, Laps):
        # Simulate controller
        xLMPC, uLMPC, xLMPC_glob, xS = LMPCsimulator.sim(xS,  lmpc)
        # Add trajectory to controller
        lmpc.addTrajectory( xLMPC, uLMPC, xLMPC_glob)
        # lmpcpredictiveModel.addTrajectory(np.append(xLMPC,np.array([xS[0]]),0),np.append(uLMPC, np.zeros((1,2)),0))
        lmpcpredictiveModel.addTrajectory(xLMPC,uLMPC)
        print("Completed lap: ", it, " in ", np.round(lmpc.Qfun[it][0]*dt, 2)," seconds")
    print("===== LMPC terminated")

    # # ======================================================================================================================
    # # ========================================= PLOT TRACK =================================================================
    # # ======================================================================================================================
    for i in range(0, lmpc.it):
        print("Lap time at iteration ", i, " is ",np.round( lmpc.Qfun[i][0]*dt, 2), "s")

    print("===== Start Plotting")
    plotTrajectory(map, xPID_cl, xPID_cl_glob, uPID_cl, 'PID')
    plotTrajectory(map, xMPC_cl, xMPC_cl_glob, uMPC_cl, 'MPC')
    plotTrajectory(map, xTVMPC_cl, xTVMPC_cl_glob, uTVMPC_cl, 'TV-MPC')
    plotClosedLoopLMPC(lmpc, map)
    animation_xy(map, lmpc, Laps-1)
    plt.show()
Exemplo n.º 2
0
# ======================================================================================================================
dt = 1.0 / 10.0  # Controller discretization time
Time = 100  # Simulation time for path following PID
TimeMPC = 100  # Simulation time for path following MPC
TimeMPC_tv = 100  # Simulation time for path following LTV-MPC
vt = 0.8  # Reference velocity for path following controllers
v0 = 0.5  # Initial velocity at lap 0
N = 12  # Horizon length
n = 6
d = 2  # State and Input dimension

# Path Following tuning
Q = np.diag([1.0, 1.0, 1, 1, 0.0, 100.0])  # vx, vy, wz, epsi, s, ey
R = np.diag([1.0, 10.0])  # delta, a

map = Map(0.8)  # Initialize the map (PointAndTangent); argument is track width
simulator = Simulator(map)  # Initialize the Simulator

# ======================================================================================================================
# ==================================== Initialize parameters for LMPC ==================================================
# ======================================================================================================================
TimeLMPC = 400  # Simulation time
Laps = 5 + 2  # Total LMPC laps

# Safe Set Parameter
LMPC_Solver = "CVX"  # Can pick CVX for cvxopt or OSQP. For OSQP uncomment line 14 in LMPC.py
numSS_it = 2  # Number of trajectories used at each iteration to build the safe set
numSS_Points = 32 + N  # Number of points to select from each trajectory to build the safe set
shift = 0  # Given the closed point, x_t^j, to the x(t) select the SS points from x_{t+shift}^j

# Tuning Parameters
Exemplo n.º 3
0
# ======================================================================================================================
dt = 1.0 / 10.0  # Controller discretization time
Time = 100  # Simulation time for PID
TimeMPC = 100  # Simulation time for path following MPC
TimeMPC_tv = 100  # Simulation time for path following LTV-MPC
vt = 0.8  # Reference velocity for path following controllers
v0 = 0.5  # Initial velocity at lap 0
N = 12  # Horizon length
n = 6
d = 2  # State and Input dimension

# Path Following tuning
Q = np.diag([1.0, 1.0, 1, 1, 0.0, 100.0])  # vx, vy, wz, epsi, s, ey
R = np.diag([1.0, 10.0])  # delta, a

map = Map(0.4, 1)  # Initialize the map
simulator = Simulator(map)  # Initialize the Simulator

# ======================================================================================================================
# ==================================== Initialize parameters for LMPC ==================================================
# ======================================================================================================================
TimeLMPC = 400  # Simulation time
Laps = 25 + 2  # Total LMPC laps

# Safe Set Parameters
LMPC_Solver = "CVX"  # Can pick CVX for cvxopt or OSQP. For OSQP uncomment line 14 in LMPC.py
numSS_it = 2  # Number of trajectories used at each iteration to build the safe set
numSS_Points = 40  # Number of points to select from each trajectory to build the safe set

# Tuning Parameters
Qslack = 2 * 5 * np.diag([
Exemplo n.º 4
0
# ======================================================================================================================
dt = 1.0 / 10.0  # Controller discretization time
Time = 100  # Simulation time for PID
TimeMPC = 100  # Simulation time for path following MPC
TimeMPC_tv = 100  # Simulation time for path following LTV-MPC
vt = 0.8  # Reference velocity for path following controllers
v0 = 0.5  # Initial velocity at lap 0
N = 12  # Horizon length
n = 6
d = 2  # State and Input dimension

# Path Following tuning
Q = np.diag([1.0, 1.0, 1, 1, 0.0, 100.0])  # vx, vy, wz, epsi, s, ey
R = np.diag([1.0, 10.0])  # delta, a

map = Map(0.8)  # Initialize the map
simulator = Simulator(map)  # Initialize the Simulator

# ======================================================================================================================
# ==================================== Initialize parameters for LMPC ==================================================
# ======================================================================================================================
TimeLMPC = 400  # Simulation time
Laps = 5 + 2  # Total LMPC laps

# Safe Set Parameter
LMPC_Solver = "OSQP"  # Can pick CVX for cvxopt or OSQP. For OSQP uncomment line 14 in LMPC.py
numSS_it = 2  # Number of trajectories used at each iteration to build the safe set
numSS_Points = 32 + N  # Number of points to select from each trajectory to build the safe set
shift = 0  # Given the closed point, x_t^j, to the x(t) select the SS points from x_{t+shift}^j

# Tuning Parameters
Exemplo n.º 5
0
# ======================================================================================================================
dt = 1.0 / 10.0  # Controller discretization time
Time = 100  # Simulation time for path following PID
TimeMPC = 100  # Simulation time for path following MPC
TimeMPC_tv = 100  # Simulation time for path following LTV-MPC
vt = 0.8  # Reference velocity for path following controllers
v0 = 0.5  # Initial velocity at lap 0
N = 12  # Horizon length (12)
n = 6
d = 2  # State and Input dimension

# Path Following tuning
Q = np.diag([1.0, 1.0, 1, 1, 0.0, 100.0])  # vx, vy, wz, epsi, s, ey
R = np.diag([1.0, 10.0])  # delta, a

map = Map(0.8)  # Initialize the map (PointAndTangent); argument is track width
simulator = Simulator(map)  # Initialize the Simulator

# ======================================================================================================================
# ==================================== Initialize parameters for LMPC ==================================================
# ======================================================================================================================
TimeLMPC = 400  # Simulation time
Laps = 5 + 2  # Total LMPC laps

# Safe Set Parameter
LMPC_Solver = "CVX"  # Can pick CVX for cvxopt or OSQP. For OSQP uncomment line 14 in LMPC.py
numSS_it = 2  # Number of trajectories used at each iteration to build the safe set
numSS_Points = 32 + N  # Number of points to select from each trajectory to build the safe set
shift = 0  # Given the closed point, x_t^j, to the x(t) select the SS points from x_{t+shift}^j

# Tuning Parameters
Exemplo n.º 6
0
# ======================================================================================================================
dt = 1.0 / 10.0  # Controller discretization time
Time = 100  # Simulation time for PID
TimeMPC = 100  # Simulation time for path following MPC
TimeMPC_tv = 100  # Simulation time for path following LTV-MPC
vt = 0.8  # Reference velocity for path following controllers
v0 = 0.5  # Initial velocity at lap 0
N = 12  # Horizon length
n = 6
d = 2  # State and Input dimension

# Path Following tuning
Q = np.diag([1.0, 1.0, 1, 1, 0.0, 100.0])  # vx, vy, wz, epsi, s, ey
R = np.diag([1.0, 10.0])  # delta, a

map = Map(0.4)  # Initialize the map
simulator = Simulator(map)  # Initialize the Simulator

# ======================================================================================================================
# ==================================== Initialize parameters for LMPC ==================================================
# ======================================================================================================================
TimeLMPC = 4000  # Simulation time
Laps = 40 + 2  # Total LMPC laps

# Safe Set Parameters
LMPC_Solver = "CVX"  # Can pick CVX for cvxopt or OSQP. For OSQP uncomment line 14 in LMPC.py
numSS_it = 2  # Number of trajectories used at each iteration to build the safe set
numSS_Points = 40  # Number of points to select from each trajectory to build the safe set

# Tuning Parameters
Qslack = 2 * 5 * np.diag([
Exemplo n.º 7
0
def main():
    client = carla.Client('127.0.0.1', 2000)
    client.set_timeout(2.0)
    world = client.get_world()
    settings = world.get_settings()
    settings.fixed_delta_seconds = 0.05
    world.apply_settings(settings)
    # pygame.init()

    # display = pygame.display.set_mode(
    #     (800, 600),
    #     pygame.HWSURFACE | pygame.DOUBLEBUF)
    # font = get_font()
    # clock = pygame.time.Clock()
    # spectator = world.get_spectator()
    maxLaps = 10
    fps = 20
    Flag = 0
    lat_width = 640
    lat_height = 360
    cam_height = 0.6  #ought to be 0.5m
    cam_angle = -10
    cam_offset = 1.06
    blind_zone = 0.4 + cam_offset  #n meters
    halfwidth = 3.7
    count = 0
    store = None
    dt = 0.05

    try:
        blueprint_library = world.get_blueprint_library()
        bp = blueprint_library.filter('model3')[0]
        # spawn_point = random.choice(world.get_map().get_spawn_points())
        loc = carla.Location(x=-2.99717595, y=-87.820107, z=0.30)
        rot = carla.Rotation(pitch=0.0, yaw=90.47937, roll=0.0)
        tran = carla.Transform(loc, rot)
        vehicle = world.spawn_actor(bp, tran)
        # vehicle.set_simulate_physics(False)

        #Camera Sensor
        bp = world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', f'{lat_width}')
        bp.set_attribute('image_size_y', f'{lat_height}')
        bp.set_attribute('fov', '110')
        lc_cam = world.spawn_actor(bp,
                                   carla.Transform(
                                       carla.Location(y=-cam_offset,
                                                      z=cam_height),
                                       carla.Rotation(pitch=cam_angle,
                                                      yaw=-90.0)),
                                   attach_to=vehicle)

        #TrailingCamera
        trail_cam = world.spawn_actor(
            blueprint_library.find('sensor.camera.rgb'),
            carla.Transform(carla.Location(x=-5.5, z=2.8),
                            carla.Rotation(pitch=-15)),
            attach_to=vehicle)

        #IMU Sensor
        bp = world.get_blueprint_library().find('sensor.other.imu')
        imu = world.spawn_actor(bp, carla.Transform(), attach_to=vehicle)

        #GNSS Sensor
        bp = world.get_blueprint_library().find('sensor.other.gnss')
        gnss = world.spawn_actor(bp, carla.Transform(), attach_to=vehicle)

        #Teleport vehicle to new location

        #Initialize sensor objects
        IMU = IMUSensor(imu)
        CAM = CamManager(cam_height, cam_angle, blind_zone, halfwidth)
        GPS = GNSSSensor(gnss)
        track_dat = np.load('pnt_curv.npy')
        map = Map(3.40, track_dat)
        phys = vehicle.get_physics_control()
        lmpc = RaceLMPC(dt, 60, maxLaps, map, phys)

        max_steer = phys.wheels[0].max_steer_angle
        world.tick()
        count = 0
        lap_dat = np.zeros((30000, 9))
        # world_snapshot = world.wait_for_tick()
        # actor_snapshot = world_snapshot.find(vehicle.id)

        ## Set spectator at given transform (vehicle transform)
        # spectator.set_transform(actor_snapshot.get_transform())

        # time.sleep(2)
        with commander(world, maxLaps, fps, vehicle, imu, lc_cam, trail_cam,
                       gnss, Map, lmpc, max_steer) as controller:
            while Flag == 0:
                # clock.tick()

                snap, imu_dat, cam_dat, t_dat, gps_dat = controller.tick(
                    timeout=5.0)
                accel, gyro = IMU.Data(imu_dat)
                lat, long = GPS.Data(gps_dat)
                #Processing for Image data
                angle, dist = CAM.lateral_imgproc(cam_dat)
                epsi, deviation = CAM.Data(angle, dist)

                Flag, lap, LapTrigger, lmpc, LapTime, x, x_glob, predist = controller.lap_record(
                    snap, gyro, deviation, epsi, lmpc)
                lap_dat[count, 0:1] = x[0:1]
                lap_dat[count, 2] = x[4]
                lap_dat[count, 3:4] = x_glob[4:5]
                lap_dat[count, 5] = accel[1]
                lap_dat[count, 6] = LapTime
                lap_dat[count, 7] = lap
                lap_dat[count, 8] = predist
                if lap > 0:
                    #Apply new control
                    new_v = carla.Vector3D(x=x[0] * 3.6, y=x[1] * 3.6)
                    new_om = carla.Vector3D(z=x[2])
                    vehicle.set_velocity(new_v)
                    vehicle.set_angular_velocity(new_om)

                if LapTrigger == 1:
                    if lap == 0:
                        lmpc.PIDinit(x)

                    elif lap == 1:
                        lmpc.LTIinit(x, LapTime)

                    elif lap == 2:
                        lmpc.PIDinit(x)

                    elif lap == 3:
                        lmpc.LTVinit(x, LapTime)

                    elif lap == 4:
                        lmpc.LMPCinit(x, LapTime)

                count += 1
                # fpsn = round(1.0 / snap.timestamp.delta_seconds)
                #   # Draw the display.
                # draw_image(display, t_dat)
                # display.blit(
                #     font.render('% 5d FPS (real)' % clock.get_fps(), True, (255, 255, 255)),
                #     (8, 10))
                # display.blit(
                #     font.render('% 5d FPS (simulated)' % fpsn, True, (255, 255, 255)),
                #     (8, 28))
                # pygame.display.flip()

    finally:
        vehicle.destroy()
        print('We are Done!')
        lap_dat = np.delete(lap_dat, slice(count - 1, 29999), axis=0)
        np.save('Lap_data', lap_dat)
        pygame.quit()